Umeå universitets logga

umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bayisa, Fekadu
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Ådahl, Markus
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Rydén, Patrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Cronie, Ottmar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Large-scale modelling and forecasting of ambulance calls in northern Sweden using spatio-temporal log-Gaussian Cox processes2020Ingår i: Spatial Statistics, E-ISSN 2211-6753, Vol. 39, artikel-id 100471Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In order to optimally utilise the resources of a country’s prehospital care system, i.e. ambulance service(s),it is crucial that one is able to spatio-temporally forecast hot-spots, i.e. spatial regions and periods with anincreased risk of seeing a call to the emergency number 112 which results in the dispatch of an ambulance.Such forecasts allow the dispatcher to make strategic decisions regarding e.g. the fleet size and where todirect unoccupied ambulances. In addition, simulations based on forecasts may serve as the startingpoint for different optimal routing strategies. Although the associated data typically comes in the form ofspatio-temporal point patterns, point process based modelling attempts in the literature has been scarce.In this paper, we study a unique set of Swedish spatio-temporal ambulance call data, which consists ofthe spatial (gps) locations of the dispatch addresses and the associated days of occurrence of the calls.The spatial study region is given by the four northernmost regions of Sweden and the study period isJanuary 1, 2014 to December 31, 2018. Motivated by the non-infectious disease nature of the data, wehere employ log-Gaussian Cox processes (LGCPs) for the spatio-temporal modelling and forecasting ofthe calls. To this end, we propose a K-means based bandwidth selection method for the kernel estimationof the spatial component of the separable spatio-temporal intensity function. The temporal componentof the intensity function is modelled by means of Poisson regression, using different calendar covariates,and the spatio-temporal random field component of the random intensity of the LGCP is fitted usingsimulation via the Metropolis-adjusted Langevin algorithm. A study of the spatio-temporal dynamics ofthe data shows that a hot-spot can be found in the south eastern part of the study region, where mostpeople in the region live and our fitted model/forecasts manage to capture this behaviour quite well. Thefitted temporal component of the intensity functions reveals that there is a significant association betweenthe expected number of calls and the day of the week as well as the season of the year. In addition,non-parametric second-order spatio-temporal summary statistic estimates indicate that LGCPs seem tobe reasonable models for the data. Finally, we find that the fitted forecasts generate simulated futurespatial event patterns which quite well resemble the actual future data.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Bayisa, Fekadu
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik. Department of Mathematics and Statistics, Auburn University, AL, Auburn, United States.
    Ådahl, Markus
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Rydén, Patrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Cronie, Ottmar
    Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden; School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
    Regularised semi-parametric composite likelihood intensity modelling of a Swedish spatial ambulance call point pattern2023Ingår i: Journal of Agricultural Biological and Environmental Statistics, ISSN 1085-7117, E-ISSN 1537-2693, Vol. 28, nr 4, s. 664-683Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Motivated by the development of optimal dispatching strategies for prehospital resources, we model the spatial distribution of ambulance call events in the Swedish municipality Skellefteå during 2014–2018 in order to identify important spatial covariates and discern hotspot regions. Our large-scale multivariate data point pattern of call events consists of spatial locations and marks containing the associated priority levels and sex labels. The covariates used are related to road network coverage, population density, and socio-economic status. For each marginal point pattern, we model the associated intensity function by means of a log-linear function of the covariates and their interaction terms, in combination with lasso-like elastic-net regularized composite/Poisson process likelihood estimation. This enables variable selection and collinearity adjustment as well as reduction of variance inflation from overfitting and bias from underfitting. To incorporate mobility adjustment, reflecting people’s movement patterns, we also include a nonparametric (kernel) intensity estimate as an additional covariate. The kernel intensity estimation performed here exploits a new heuristic bandwidth selection algorithm. We discover that hotspot regions occur along dense parts of the road network. A mean absolute error evaluation of the fitted model indicates that it is suitable for designing prehospital resource dispatching strategies. Supplementary materials accompanying this paper appear online.

    Ladda ner fulltext (pdf)
    fulltext
1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf