Umeå University's logo

umu.sePublications
Change search
Refine search result
12 1 - 50 of 92
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Jens
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Byström, Pär
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Claessen, D
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    De Roos, A. M.
    Stabilization of population fluctuations due to cannibalism promotes resource polymorphism in fish2007In: American Naturalist, Vol. 169, p. 820-829Article in journal (Refereed)
  • 2.
    Andersson, Jens
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Byström, Pär
    Department of Aquaculture, Swedish University of Agricultural Sciences, Sweden.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    De Roos, André M.
    Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands.
    Plastic reources polymorphism: effects or resource availability on Arctic char (Salvelinus alpinus) morphology2005In: Biological Journal of the Linnean Society, ISSN 0024-4066, E-ISSN 1095-8312, Vol. 85, no 3, p. 341-351Article in journal (Refereed)
    Abstract [en]

    Resource polymorphism has been suggested to be a platform for speciation. In some cases resource polymorphism depends on phenotypic plasticity but in other cases on genetic differences between morphotypes, which in turn has been suggested to be the ongoing development of a species pair. Here we study environmentally induced morphological differences in two age classes of Arctic char (Salvelinus alpinus) influencing char performance and diet in relation to resource availability. We found that structurally complex habitats with relatively lower zooplankton densities gave rise to individuals with a deeper body, and a downward positioned tip of the snout compared with individuals from structurally simple habitats with relatively higher zooplankton densities for both age classes. Environment also had an effect on foraging efficiency on zooplankton, with fish from structurally simple habitats had a higher foraging rate than fish from structurally complex habitats. Diet analyses showed that resource use in char mainly depends on the relative abundance of different resources. Therefore, to gain further understanding of resource polymorphism we suggest that future studies must include population dynamic feedbacks by the resources on the consumers.

  • 3.
    Andersson, Jens
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Behavioural and morphological responses to cannibalism in Arctic charr (Salvelinus alpinus)2005In: Evolutionary Ecology Research, ISSN 1522-0613, E-ISSN 1937-3791, Vol. 7, no 5, p. 767-778Article in journal (Refereed)
    Abstract [en]

    Question: Does cannibalism lead to resource polymorphism in young Arctic charr (Salvelinusalpinus, Pisces)?

    Hypothesis: Cannibals should evoke a low-activity morph that is well adapted to benthivorybut not planktivory, and which differs in morphology compared with a planktivorous morph.

    Methods: We reared young-of-the-year charr in laboratory aquaria with and without largercannibalistic charr present. Thereafter, we measured foraging efficiency on pelagic and benthicresources, swimming speed when foraging, and morphology of the young charr.

    Conclusions: Living among cannibals did not affect the morphology of the young charr. Italso did not affect the foraging efficiency of the young charr on the benthic resource. However,individuals from cannibal treatments swam closer and had lower foraging efficiency on thepelagic resource.

  • 4.
    Ask, Jenny
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ask, Per
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Byström, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Jansson, Mats
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Terrestrial organic matter and light penetration: Effects on bacterial and primary production in lakes2009In: Limnology and Oceanography, ISSN 0024-3590, E-ISSN 1939-5590, Vol. 54, no 6, p. 2034-2040Article in journal (Refereed)
    Abstract [en]

    We investigated productivity at the basal trophic level in 15 unproductive lakes in a gradient ranging from clear-water to brown-water (humic) lakes in northern Sweden. Primary production and bacterial production in benthic and pelagic habitats were measured to estimate the variation in energy mobilization from external energy sources (primary production plus bacterial production on allochthonous organic carbon) along the gradient. Clear-water lakes were dominated by autotrophic energy mobilization in the benthic habitat, whereas humic lakes were dominated by heterotrophic energy mobilization in the pelagic habitat. Whole-lake (benthic + pelagic) energy mobilization was negatively correlated to the light-extinction coefficient, which was determined by colored terrestrial organic matter in the lake water. Thus, variation in the concentration of terrestrial organic matter and its light-absorbing characteristics exerts strong control on the magnitude, as well as on the processes and pathways, of energy mobilization in unproductive lakes. We suggest that unproductive lakes in general are sensitive to input of terrestrial organic matter because of its effects on basal energy mobilization in both benthic and pelagic habitats.

  • 5.
    Ask, Jenny
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ask, Per
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Byström, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Jansson, Mats
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes2009In: Ecology, ISSN 0012-9658, E-ISSN 1939-9170, Vol. 90, no 7, p. 1923-1932Article in journal (Refereed)
    Abstract [en]

    This study quantified new biomass production of algae and bacteria in both benthic and pelagic habitats of clear-water lakes to contrast how carbon from the atmosphere and terrestrial sources regulates whole-lake metabolism. We studied four small unproductive lakes in subarctic northern Sweden during one summer season. The production of new biomass in both benthic and pelagic habitats was calculated as the sum of autotrophic production by algae and heterotrophic production by bacteria using allochthonous organic carbon (OC). Whole-lake production of new biomass was dominated by the benthic habitat (86% +/- 4% [mean +/- SD]) and by primary production (77% +/- 9%). Still, heterotrophic bacteria fueled by allochthonous OC constituted a significant portion of the new biomass production in both benthic (19% +/- 11%) and pelagic habitats (51% +/- 24%). In addition, overall net production (primary production minus respiration) was close to zero in the benthic habitats but highly negative (-163 +/- 81 mg C.m(-2).d(-1)) in pelagic regions of all lakes. We conclude (1) that allochthonous OC supported a significant part of total production of new biomass in both pelagic and benthic habitats, (2) that benthic habitats dominated the whole-lake production of new biomass, and (3) that respiration and net CO2 production dominated the carbon flux of the pelagic habitats and biomass production dominated the benthic carbon flux. Taken together, these findings suggest that previous investigations have greatly underestimated the productivity of clear-water lakes when benthic autotrophic production and metabolism of allochthonous OC have not been measured.

  • 6.
    Ask, Per
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ask, Jenny
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Byström, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Jansson, Mats
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Competition mediated coexistence of invading intermediate consumer, ninespine stickleback, and a resident omnivorous top predator, Arctic charManuscript (preprint) (Other academic)
    Abstract [en]

    Climate change results in changes in the geographical distribution of species. Species invasion success into a new area is dependent both on the dispersal ability of species as well as the strength and identity of biotic interactions between resident and invading species. Coexistence in intraguild predation (IGP) systems depends on the relative strength of predation and competition interactions which in turn are temperature dependent. We investigated the effects of introducing an intermediate consumer, ninespine stickleback (Pungitius pungitius), into allopatric populations of the omnivorous top predator Arctic char (Salvelinus alpinus). Introductions were performed in lakes with different climate regimes, two tundra lakes and two forest lakes that differed in average summer temperatures with 1.4 ± 0.5 ºC (average ± 1SD). We found that sticklebacks were able to invade and increase in density in both tundra and forest lakes. Sticklebacks had strong negative effects on resource densities which also was reflected in a decreased growth of small char. Increasing stickleback density had a positive effect on growth of large adults and on the maximum size of char. We conclude that stickleback presence is not limited by biological interactions in these systems but rather by dispersion ability. We suggest that the size dependency in the response of char to the invasion of sticklebacks is fundamental for the successful invasion of sticklebacks, and that size dependent interactions including cannibalism play important roles for coexistence in natural IGP-systems.

  • 7.
    Ask, Per
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ask, Jenny
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Byström, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Jansson, Mats
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Temperature mediated effects on top consumer populations in subarctic lakesManuscript (preprint) (Other academic)
    Abstract [en]

    The effects of temperature on top consumer populations in subarctic lake communities were studied by contrasting two lake pairs in different climate regimes: one pair on the low alpine tundra and one pair in the subalpine birch forest. We measured zooplankton and macroinvertebrate biomasses over the season and estimated population density and size structure of the top consumer Arctic char (Salvelinus alpinus). Furthermore, we modelled char growth using literature data on temperature dependent search rate, handling time and metabolic demands. The forest lakes were warmer than the tundra lakes. Char in the forest lakes were larger and had a higher individual growth compared to char in the tundra lakes, while population density and biomasses of char were not different between the forest and the tundra lakes. There were no differences in macroinvertebrate and zooplankton resource levels available for char between lake pairs. Our modeling of char growth revealed that higher temperature increased growth of char at the observed resource densities, suggesting that the higher temperature in the forest lakes was primarily the cause of the higher growth of char in these lakes. We suggest that cannibalism in char may regulate char recruitment and thereby population density and biomass of char leading to effects of increasing temperature on consumer biomass and consumer individual growth different from what is expected in pure consumer-resource systems. Our results emphasize the importance of feedbacks within ecosystems when addressing effects of climate change and increasing temperature on lake communities.

  • 8. Bartels, Pia
    et al.
    Cucherousset, Julien
    Gudasz, Cristian
    Jansson, Mats
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Premke, Katrin
    Rubach, Anja
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Steger, Kristin
    Tranvik, Lars J.
    Eklov, Peter
    Terrestrial subsidies to lake food webs: an experimental approach2012In: Oecologia, ISSN 0029-8549, E-ISSN 1432-1939, Vol. 168, no 3, p. 807-818Article in journal (Refereed)
    Abstract [en]

    Cross-ecosystem movements of material and energy are ubiquitous. Aquatic ecosystems typically receive material that also includes organic matter from the surrounding catchment. Terrestrial-derived (allochthonous) organic matter can enter aquatic ecosystems in dissolved or particulate form. Several studies have highlighted the importance of dissolved organic carbon to aquatic consumers, but less is known about allochthonous particulate organic carbon (POC). Similarly, most studies showing the effects of allochthonous organic carbon (OC) on aquatic consumers have investigated pelagic habitats; the effects of allochthonous OC on benthic communities are less well studied. Allochthonous inputs might further decrease primary production through light reduction, thereby potentially affecting autotrophic resource availability to consumers. Here, an enclosure experiment was carried out to test the importance of POC input and light availability on the resource use in a benthic food web of a clear-water lake. Corn starch (a C-4 plant) was used as a POC source due to its insoluble nature and its distinct carbon stable isotope value (delta C-13). The starch carbon was closely dispersed over the bottom of the enclosures to study the fate of a POC source exclusively available to sediment biota. The addition of starch carbon resulted in a clear shift in the isotopic signature of surface-dwelling herbivorous and predatory invertebrates. Although the starch carbon was added solely to the sediment surface, the carbon originating from the starch reached zooplankton. We suggest that allochthonous POC can subsidize benthic food webs directly and can be further transferred to pelagic systems, thereby highlighting the importance of benthic pathways for pelagic habitats.

  • 9.
    Bernes, Claes
    et al.
    1 Mistra Council for Evidence-Based Environmental Management, Royal Swedish Academy of Sciences.
    Carpenter, Stephen
    University of Wisconsin, USA.
    Gårdmark, Anna
    Swedish University of Agricultural Sciences.
    Larsson, Per
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Skov, Christian
    Technical University of Denmark, Denmark.
    Speed, James
    Norwegian University of Science and Technology, Norway.
    Van Donk, Ellen
    Netherlands Institute of Ecology, The Netherlands.
    What is the influence of a reduction of planktivorous and benthivorous fish on water quality in temperate eutrophic lakes?: A systematic review2015In: Environmental Evidence, E-ISSN 2047-2382, Vol. 4, no 1, article id 7Article in journal (Refereed)
    Abstract [en]

    Background

    In recent decades, many attempts have been made to restore eutrophic lakes through biomanipulation. Reducing the populations of planktivorous and benthivorous fish (either directly or through stocking of piscivorous fish) may induce ecosystem changes that increase water transparency and decrease the risk of algal blooms and fish kills, at least in the short term. However, the generality of biomanipulation effects on water quality across lake types and geographical regions is not known. Therefore, we have undertaken a systematic review of such effects in eutrophic lakes in temperate regions throughout the world.

    Methods

    Searches for literature were made using online publication databases, search engines, specialist websites and bibliographies of literature reviews. Search terms were developed in English, Danish, Dutch and Swedish. Identified articles were screened for relevance using inclusion criteria set out in an a priori protocol. To reduce the risk of bias, we then critically appraised the combined evidence found on each biomanipulation. Data were extracted on outcomes such as Secchi depth and chlorophyll a concentration before, during and/or after manipulation, and on effect modifiers such as lake properties and amounts of fish removed or stocked.

    Results

    Our searches identified more than 14,500 articles. After screening for relevance, 233 of them remained. After exclusions based on critical appraisal, our evidence base included useful data on 128 biomanipulations in 123 lakes. Of these interventions, 85% had been made in Europe and 15% in North America. Meta-analysis showed that removal of planktivores and benthivores (with or without piscivore stocking) leads to increased Secchi depth and decreased chlorophyll a concentration during intervention and the first three years afterwards. Piscivore stocking alone has no significant effect. The response of chlorophyll a levels to biomanipulation is stronger in lakes where fish removal is intense, and in lakes which are small and/or have high pre-manipulation concentrations of total phosphorus.

    Conclusions

    Our review improves on previous reviews of biomanipulation in that we identified a large number of case studies from many parts of the world and used a consistent, repeatable process to screen them for relevance and susceptibility to bias. Our results indicate that removal of planktivorous and benthivorous fish is a useful means of improving water quality in eutrophic lakes. Biomanipulation tends to be particularly successful in relatively small lakes with short retention times and high phosphorus levels. More thorough fish removal increases the efficacy of biomanipulation. Nonetheless successes and failures have occurred across a wide range of conditions.

    Download full text (pdf)
    fulltext
  • 10.
    Bernes, Claes
    et al.
    Mistra Council for Evidence-Based Environmental Management, Royal Swedish Academy of Sciences, Stockholm, Sweden.
    Carpenter, Stephen R.
    University of Wisconsin Center for Limnology, Madison, USA.
    Gårdmark, Anna
    Swedish University of Agricultural Sciences, Öregrund, Sweden.
    Larsson, Per
    School of Natural Sciences, Linnaeus University, Kalmar, Sweden.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Skov, Christian
    DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark.
    Van Donk, Ellen
    Department of Aquatic Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
    What is the influence on water quality in temperate eutrophic lakes of a reduction of planktivorous and benhivorous fish?: A systematic review protocol2013In: Environmental Evidence, E-ISSN 2047-2382, Vol. 2, article id 9Article in journal (Refereed)
    Abstract [en]

    Background: In lakes that have become eutrophic due to sewage discharges or nutrient runoff from land, problems such as algal blooms and oxygen deficiency often persist even when nutrient supplies have been reduced. One reason is that phosphorus stored in the sediments can exchange with the water. There are indications that the high abundance of phytoplankton, turbid water and lack of submerged vegetation seen in many eutrophic lakes may represent a semi-stable state. For that reason, a shift back to more natural clear-water conditions could be difficult to achieve.

    In some cases, though, temporary mitigation of eutrophication-related problems has been accomplished through biomanipulation: stocks of zooplanktivorous fish have been reduced by intensive fishing, leading to increased populations of phytoplankton-feeding zooplankton. Moreover, reduction of benthivorous fish may result in lower phosphorus fluxes from the sediments. An alternative to reducing the dominance of planktivores and benthivores by fishing is to stock lakes with piscivorous fish. These two approaches have often been used in combination.

    The implementation of the EU Water Framework Directive has recently led to more stringent demands for measures against eutrophication, and a systematic review could clarify whether biomanipulation is efficient as a measure of that kind.

    Methods: The review will examine primary field studies of how large-scale biomanipulation has affected water quality and community structure in eutrophic lakes or reservoirs in temperate regions. Such studies can be based on comparison between conditions before and after manipulation, on comparison between treated and non-treated water bodies, or both. Relevant outcomes include Secchi depth, concentrations of oxygen, nutrients, suspended solids and chlorophyll, abundance and composition of phytoplankton, zooplankton and fish, and coverage of submerged macrophytes.

    Download full text (pdf)
    fulltext
  • 11. Bolnick, Daniel I
    et al.
    Svanbäck, Richard
    Araújo, Márcio S.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous2007In: Proceedings of the National Academy of Sciences, Vol. 104, no 24, p. 10075-10079Article in journal (Refereed)
    Abstract [en]

    There is extensive evidence that some species of ecological generalists, which use a wide diversity of resources, are in fact heterogeneous collections of relatively specialized individuals. This within-population variation, or "individual specialization," is a key requirement for frequency-dependent interactions that may drive a variety of types of evolutionary diversification and may influence the population dynamics and ecological interactions of species. Consequently, it is important to understand when individual specialization is likely to be strong or weak. The niche variation hypothesis (NVH) suggests that populations tend to become more generalized when they are released from interspecific competition. This niche expansion was proposed to arise via increased variation among individuals rather than increased individual niche breadth. Consequently, we expect ecological generalists to exhibit stronger individual specialization, but this correlation has been repeatedly rejected by empiricists. The drawback with previous empirical tests of the NVH is that they use morphological variation as a proxy for niche variation, ignoring the role of behavior and complex phenotype–function relationships. Here, we used diet data to directly estimate niche variation among individuals. Consistent with the NVH, we show that more generalized populations also exhibit more niche variation. This trend is quite general, appearing in all five case studies examined: three-spine stickleback, Eurasian perch, Anolis lizards, intertidal gastropods, and a community of neotropical frogs. Our results suggest that generalist populations may tend to be more ecologically variable. Whether this translates into greater genetic variation, evolvability, or ecological stability remains to be determined.

  • 12.
    Byström, P
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Andersson, J
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Persson, L
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    De Roos, A M
    Size-dependent resource limitation and foraging-predation risk trade-offs: growth and habitat use in young arctic char2004In: Oikos, Vol. 104, p. 109-121Article in journal (Refereed)
  • 13.
    Byström, Pär
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ask, Per
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Andersson, Jens
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Preference for cannibalism and ontogenetic constraints in competitive ability of piscivorous top predators2013In: PLOS ONE, E-ISSN 1932-6203, Vol. 8, no 7, p. e70404-Article in journal (Refereed)
    Abstract [en]

    We experimentally show that the piscivorous top predator Arctic char (Salvelinus alpinus) have higher attack rates on cannibal prey compared to the interspecific prey species ninespine stickleback (Pungitius pungitius), and that sticklebacks are more efficient competitiors for zooplankton resources compared to juvenile char. We also conducted a literature survey that together with our experiments showed that piscivorous top consumers selected cannibal prey over interspecific prey in 9 out of 10 cases. Our literature survey also showed that specialist prey species are competitively superior compared to juvenile piscivorous species within the zooplankton niche. We discuss our results in relation to omnivory in fish communities and we suggest that the observed general preference for cannibal prey over interspecific prey in piscivores and the competitive advantage of prey species over juvenile piscivores may be major mechanisms for coexistence in fish communities.

    Download full text (pdf)
    fulltext
  • 14.
    Byström, Pär
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Huss, Magnus
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ontogenetic constraints and diet shifts in Perch (Perca fluviatilis): mechanisms and consequences for intra-cohort cannibalism2012In: Freshwater Biology, ISSN 0046-5070, E-ISSN 1365-2427, Vol. 57, no 4, p. 847-857Article in journal (Refereed)
    Abstract [en]

    1. In many populations, sufficient size variation to allow for cannibalism may develop not only among age cohorts but also within them. Here, we used data on resource dynamics, consumer body size distribution and gape size limitation to unravel mechanisms promoting cannibalism within cohorts of young-of-the-year (YOY) perch (Perca fluviatilis). 2. Perch are strongly gape limited when feeding on large zooplankton during early ontogeny. As a consequence, only initially large fish were able to shift to feeding on abundant large invertebrates, necessary to sustain fast growth. 3. We suggest that a combination of high initial size variation and exclusive access to resources for individuals with an initial size advantage is a prerequisite for the development of a size distribution sufficient for intra-cohort cannibalism to occur. 4. During the time when cannibalism was observed, growth of the largest individuals in YOY perch cohorts was faster than that of smaller individuals. However, the energy gain from cannibalism did not increase growth rate enough to reach a size necessary to feed on more abundant size classes of victims, and therefore, the effect of cannibalism on overall cohort density was minor. 5. In addition to a high energy gain from cannibalism allowing for fast growth, strong resource limitation and slow growth rates of small individuals (i.e. potential victims) are a prerequisite not only for the development of intra-cohort cannibalism but also for its persistence.

  • 15. Claessen, David
    et al.
    Andersson, Jens
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Persson, Lennart
    de Roos, André M
    Delayed evolutionary branching in small populations2007In: Evolutionary Ecology Research, Vol. 9, p. 51-69Article in journal (Refereed)
  • 16. Claessen, David
    et al.
    Andersson, Jens
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    de Roos, André M
    The effect of population size and recombination on delayed evolution of polymorphism and speciation in sexual populations2008In: American Naturalist, ISSN 0003-0147, E-ISSN 1537-5323, Vol. 172, no 1, p. E18-34Article in journal (Refereed)
    Abstract [en]

    Recent theory suggests that absolute population size may qualitatively influence the outcome of evolution under disruptive selection in asexual populations. Large populations are predicted to undergo rapid evolutionary branching; however, in small populations, the waiting time to branching increases steeply with decreasing abundance, and below a critical size, the population remains monomorphic indefinitely. Here, we (1) extend the theory to sexual populations and (2) confront its predictions with empirical data, testing statistically whether lake size affects the level of resource polymorphism in arctic char (Salvelinus alpinus) in 22 lakes of different sizes. For a given level of recombination, our model predicts qualitatively similar relations between population size and time to evolutionary branching (either speciation or evolution of genetic polymorphism) as the asexual model, while recombination further increases the delay to branching. The loss of polymorphism at certain loci, an inherent aspect of multilocus-trait evolution, may increase the delay to speciation, resulting in stable genetic polymorphism without speciation. The empirical analysis demonstrates that the occurrence of resource polymorphism depends on both lake size and the number of coexisting fish species. For a given number of coexisting species, the level of polymorphism increases significantly with lake size, thus confirming our model prediction.

  • 17.
    Claessen, David
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    de Roos, André M
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Population dynamic theory of size-dependent cannibalism.2004In: Proc Biol Sci, ISSN 0962-8452, Vol. 271, no 1537, p. 333-40Article in journal (Other academic)
  • 18. De Roos, A M
    et al.
    Persson, L
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    The influence of individual growth and development on the structure of ecological communities2005In: Food webs. dynamic food webs- multispecies assemblages, ecosystem development and environmental change, Academic Press , 2005, p. 89-100Chapter in book (Refereed)
  • 19. De Roos, A M
    et al.
    Persson, L
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Unstructured population models: Do general assumptions yield general theory?2005In: Ecological paradigms lost: Routes to theory change, Academic Press , 2005, p. 31-62Chapter in book (Refereed)
  • 20. de Roos, A. M.
    et al.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Population and community ecology of ontogenetic development2013Book (Other academic)
    Abstract [en]

    Most organisms show substantial changes in size or morphology after they become independent of their parents and have to find their own food. Furthermore, the rate at which these changes occur generally depends on the amount of food they ingest. In this book, André de Roos and Lennart Persson advance a synthetic and individual-based theory of the effects of this plastic ontogenetic development on the dynamics of populations and communities. De Roos and Persson show how the effects of ontogenetic development on ecological dynamics critically depend on the efficiency with which differently sized individuals convert food into new biomass. Differences in this efficiency--or ontogenetic asymmetry--lead to bottlenecks in and thus population regulation by either maturation or reproduction. De Roos and Persson investigate the community consequences of these bottlenecks for trophic configurations that vary in the number and type of interacting species and in the degree of ontogenetic niche shifts exhibited by their individuals. They also demonstrate how insights into the effects of maturation and reproduction limitation on community equilibrium carry over to the dynamics of size-structured populations and give rise to different types of cohort-driven cycles.

  • 21. De Roos, Andre M.
    et al.
    Metz, Johan A. J.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ontogenetic symmetry and asymmetry in energetics2013In: Journal of Mathematical Biology, ISSN 0303-6812, E-ISSN 1432-1416, Vol. 66, no 4-5, p. 889-914Article in journal (Refereed)
    Abstract [en]

    Body size ( biomass) is the dominant determinant of population dynamical processes such as giving birth or dying in almost all species, with often drastically different behaviour occurring in different parts of the growth trajectory, while the latter is largely determined by food availability at the different life stages. This leads to the question under what conditions unstructured population models, formulated in terms of total population biomass, still do a fair job. To contribute to answering this question we first analyze the conditions under which a size-structured model collapses to a dynamically equivalent unstructured one in terms of total biomass. The only biologically meaningful case where this occurs is when body size does not affect any of the population dynamic processes, this is the case if and only if the mass-specific ingestion rate, the mass-specific biomass production and the mortality rate of the individuals are independent of size, a condition to which we refer as "ontogenetic symmetry". Intriguingly, under ontogenetic symmetry the equilibrium biomass-body size spectrum is proportional to 1/size, a form that has been conjectured for marine size spectra and subsequently has been used as prior assumption in theoretical papers dealing with the latter. As a next step we consider an archetypical class of models in which reproduction takes over from growth upon reaching an adult body size, in order to determine how quickly discrepancies from ontogenetic symmetry lead to relevant novel population dynamical phenomena. The phenomena considered are biomass overcompensation, when additional imposed mortality leads, rather unexpectedly, to an increase in the equilibrium biomass of either the juveniles or the adults (a phenomenon with potentially big consequences for predators of the species), and the occurrence of two types of size-structure driven oscillations, juvenile-driven cycles with separated extended cohorts, and adult-driven cycles in which periodically a front of relatively steeply decreasing frequencies moves up the size distribution. A small discrepancy from symmetry can already lead to biomass overcompensation; size-structure driven cycles only occur for somewhat larger discrepancies.

  • 22. de Roos, André M
    et al.
    Boukal, David S
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Evolutionary regime shifts in age and size at maturation of exploited fish stocks.2006In: Proc Biol Sci, ISSN 0962-8452, Vol. 273, no 1596, p. 1873-80Article in journal (Refereed)
  • 23.
    de Roos, André M.
    et al.
    Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94084, 1090 GB Amsterdam, The Netherlands.
    Schellekens, Tim
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Van Kooten, Tobias
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Stage-specific predator species help each other to persist while competing for a single prey2008In: Proceedings from the National Academy of Science of the United States of America, ISSN 0027-8424, EISSN 1091-6490, Vol. 105, no 37, p. 13930-13935Article in journal (Refereed)
    Abstract [en]

    Prey in natural communities are usually shared by many predator species. How predators coexist while competing for the same prey is one of the fundamental questions in ecology. Here we show that competing predator species may not only coexist on a single prey but even help each other to persist, if they specialize on different life history stages of the prey. By changing the prey size distribution a predator species may in fact increase the amount of prey available for its competitor. Surprisingly, a predator may even not be able to persist at all unless its competitor is also present. The competitor thus increases significantly the range of conditions for which a particular predator can persist. This “emergent facilitation” is a long-term, population-level effect that results from asymmetric increases in the rate of prey maturation and reproduction when predation relaxes competition among prey. Emergent facilitation explains observations of correlated increases of predators on small and large conspecific prey as well as concordance in their distribution patterns. Our results suggest that emergent facilitation may promote the occurrence of complex, stable community food webs and that persistence of these communities could critically depend on diversity within predator guilds.

  • 24.
    de Roos, André M
    et al.
    Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O.Box 94084, 1090 GB Amsterdam, The Netherlands.
    Schellekens, Tim
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    van Kooten, Tobias
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    van de Wolfshaar, Karen
    Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O.Box 94084, 1090 GB Amsterdam, The Netherlands.
    Claessen, David
    Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O.Box 94084, 1090 GB Amsterdam, The Netherlands.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Food-dependent growth leads to overcompensation in stage-specific biomass when mortality increases: the influence of maturation versus reproduction regulation2007In: American Naturalist, ISSN 0003-0147, E-ISSN 1537-5323, Vol. 170, no 3, p. E59-E76Article in journal (Refereed)
  • 25.
    De Roos, André M
    et al.
    Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O.Box 94084, 1090 GB Amsterdam, The Netherlands.
    Schellekens, Tim
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Van Kooten, Tobias
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Van De Wolfshaar, Karen
    Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O.Box 94084, 1090 GB Amsterdam, The Netherlands.
    Claessen, David
    Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O.Box 94084, 1090 GB Amsterdam, The Netherlands.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Simplifying a physiologically structured population model to a stage-structured biomass model.2008In: Theoretical Population Biology, ISSN 0040-5809, E-ISSN 1096-0325, Vol. 73, no 1, p. 47-62Article in journal (Refereed)
    Abstract [en]

    We formulate and analyze an archetypal consumer-resource model in terms of ordinary differential equations that consistently translates individual life history processes, in particular food-dependent growth in body size and stage-specific differences between juveniles and adults in resource use and mortality, to the population level. This stage-structured model is derived as an approximation to a physiologically structured population model, which accounts for a complete size-distribution of the consumer population and which is based on assumptions about the energy budget and size-dependent life history of individual consumers. The approximation ensures that under equilibrium conditions predictions of both models are completely identical. In addition we find that under non-equilibrium conditions the stage-structured model gives rise to dynamics that closely approximate the dynamics exhibited by the size-structured model, as long as adult consumers are superior foragers than juveniles with a higher mass-specific ingestion rate. When the mass-specific intake rate of juvenile consumers is higher, the size-structured model exhibits single-generation cycles, in which a single cohort of consumers dominates population dynamics throughout its life time and the population composition varies over time between a dominance by juveniles and adults, respectively. The stage-structured model does not capture these dynamics because it incorporates a distributed time delay between the birth and maturation of an individual organism in contrast to the size-structured model, in which maturation is a discrete event in individual life history. We investigate model dynamics with both semi-chemostat and logistic resource growth.

  • 26.
    Diehl, Sebastian
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Lundberg, Peter A
    Gardfjell, Hans
    Oksanen, Lauri
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Daphnia-phytoplankton interactions in lakes: is there a need for ratio-dependent consumer-resource models?1993In: American Naturalist, ISSN 0003-0147, E-ISSN 1537-5323, Vol. 142, no 6, p. 1052-1061Article in journal (Refereed)
  • 27. Eriksson, Ove
    et al.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    A Spatial Dimension of Ecology: Ilkka Hanski Crafoord Laureate in 20112011In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 40, no 3, p. 247-Article in journal (Refereed)
  • 28. Gessner, M O
    et al.
    Inchausti, P
    Persson, L
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Raffaelli, D G
    Giller, P S
    Biodiversity effects on ecosystem functioning: Insights from aquatic systems2004In: Oikos, Vol. 104, p. 419-422Article in journal (Refereed)
  • 29. Gårdmark, Anna
    et al.
    Casini, Michele
    Huss, Magnus
    van Leeuwen, Anieke
    Hjelm, Joakim
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    de Roos, André M.
    Regime shifts in exploited marine food webs: detecting mechanisms underlying alternative stable states using size-structured community dynamics theory2015In: Philosophical Transactions of the Royal Society of London. Biological Sciences, ISSN 0962-8436, E-ISSN 1471-2970, Vol. 370, no 1659, p. 20130262-Article in journal (Refereed)
    Abstract [en]

    Many marine ecosystems have undergone 'regime shifts', i.e. abrupt reorganizations across trophic levels. Establishing whether these constitute shifts between alternative stable states is of key importance for the prospects of ecosystem recovery and for management. We show how mechanisms underlying alternative stable states caused by predator-prey interactions can be revealed in field data, using analyses guided by theory on size-structured community dynamics. This is done by combining data on individual performance (such as growth and fecundity) with information on population size and prey availability. We use Atlantic cod (Gadus morhua) and their prey in the Baltic Sea as an example to discuss and distinguish two types of mechanisms, 'cultivation-depensation' and 'overcompensation', that can cause alternative stable states preventing the recovery of overexploited piscivorous fish populations. Importantly, the type of mechanism can be inferred already from changes in the predators' body growth in different life stages. Our approach can thus be readily applied to monitored stocks of piscivorous fish species, for which this information often can be assembled. Using this tool can help resolve the causes of catastrophic collapses in marine predatory-prey systems and guide fisheries managers on how to successfully restore collapsed piscivorous fish stocks.

  • 30.
    Hin, Vincent
    et al.
    Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands.
    Schellekens, Tim
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    de Roos, Andre
    Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    The role of predation and competition in a stage-structured intraguild predation systemManuscript (preprint) (Other academic)
    Abstract [en]

    Omnivorous species can simultaneously prey on and compete with other species, a type of interaction referred to as intraguild predation (IGP). Theory predicts that coexistence in IGP systems requires a balance between predation and competition interactions, which occurs when the consumer is a superior resource competitor and resource productivity is restricted to intermediate levels. Mixed competition/predation interactions between a predator and a consumer can, however, also result from ontogenetic niche shifts (life history omnivory). When young, a life history omnivore competes with the species that becomes its prey later in life.  Resource competition with superior consumers can hence limit the development of young predators, while adult predators can cultivate a favourable environment for their young by suppressing these consumers. We formulate and analyze a model in which predators interact with consumers and resources through a mixture of basic intraguild predation and life history omnivory. The model predicts increasing coexistence when predators change to life history omnivores. Furthermore, we show that the crucial assumption enabling coexistence in case of basic intraguild predation, that consumers are superior resource competitors, demotes coexistence when predators are life history omnivores. In coexistence community dynamics are shaped primarily by predation with competitive interactions playing a marginal role. As a result, community dynamics in stage-structured IGP systems, in which predators are life history omnivores, largely resemble those of a three-species linear food chain.

  • 31. Hin, Vincent
    et al.
    Schellekens, Tim
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    de Roos, Andre M.
    Coexistence of Predator and Prey in Intraguild Predation Systems with Ontogenetic Niche Shifts2011In: American Naturalist, ISSN 0003-0147, E-ISSN 1537-5323, Vol. 178, no 6, p. 701-714Article in journal (Refereed)
    Abstract [en]

    In basic intraguild predation (IGP) systems, predators and prey also compete for a shared resource. Theory predicts that persistence of these systems is possible when intraguild prey is superior in competition and productivity is not too high. IGP often results from ontogenetic niche shifts, in which the diet of intraguild predators changes as a result of growth in body size (life-history omnivory). As a juvenile, a life-history omnivore competes with the species that becomes its prey later in life. Competition can hence limit growth of young predators, while adult predators can suppress consumers and therewith neutralize negative effects of competition. We formulate and analyze a stage-structured model that captures both basic IGP and life-history omnivory. The model predicts increasing coexistence of predators and consumers when resource use of stage-structured predators becomes more stage specific. This coexistence depends on adult predators requiring consumer biomass for reproduction and is less likely when consumers outcompete juvenile predators, in contrast to basic IGP. Therefore, coexistence occurs when predation structures the community and competition is negligible. Consequently, equilibrium patterns over productivity resemble those of three-species food chains. Life-history omnivory thus provides a mechanism that allows intraguild predators and prey to coexist over a wide range of resource productivity.

  • 32.
    Huss, Magnus
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Byström, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Effects of ontogenetic scaling on resource exploitation and cohort size distributions2010In: Oikos, ISSN 0030-1299, E-ISSN 1600-0706, Vol. 119, no 2, p. 384-392Article in journal (Refereed)
    Abstract [en]

    Variation in growth rates among individuals leading to the formation of broad size distributions is commonly observed in animal cohorts. Here we use laboratory derived size-scaling relationships to identify mechanisms driving changes in size distribution patterns within cohorts during early ontogeny. We introduced young-of-the-year perch (Perca fluviatilis) cohorts with different variation in body size distributions in pond enclosures. We kept the exploitative competitive environment constant by adjusting the number of introduced fish such that metabolic requirements were constant between different treatments. Based on modelling results we theoretically derived relative growth rates of differently sized fish when only taken exploitative competitive interactions into account. In agreement with predictions we found that initial variation in body size was negatively correlated with subsequent changes in body size variation in the pond experiment. Corresponding results were obtained in a field study covering 13 studied young-of-the-year perch cohorts in a small lake. Besides having a lower maximum growth capacity, initially large fish also suffered more from resource limitation in our experiment. The results suggest that exploitation competition is a major factor behind growth patterns in young fish cohorts, generally leading to size convergence. To explain the commonly observed pattern of size divergence in animal cohorts, including fish, we suggest that differential timing of diet shifts or mechanisms not related to exploitative interactions must be taken into account. For diet shifts to lead to size divergence we suggest that individuals with an initial size advantage need access to an exclusive prey which has a high growth potential. This, in turn, allows initially larger individuals to surf on a wave of growing prey while individuals only capable to feed on a depressed initial resource experience low growth rates.

  • 33.
    Huss, Magnus
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Byström, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Growing through predation windows:: effects on body size development in young fish2010In: Oikos, ISSN 0030-1299, E-ISSN 1600-0706, Vol. 119, p. 1796-1804Article in journal (Refereed)
    Abstract [en]

    Th e degree to which growth in early life stages of animals is regulated via density-dependent feedbacks through preyresources is much debated. Here we have studied the infl uence of size- and density-dependent mechanisms as well as sizeselectivepredation pressure by cannibalistic perch Perca fl uviatilis on growth patterns of young-of-the-year (YOY) perchcovering several lakes and years. We found no infl uence of initial size or temperature on early body size development ofperch. In contrast, there was a negative relationship between reproductive output and the length of YOY perch at fi ve weeksof age. However, rather than an eff ect of density-dependent growth mediated via depressed resources the relationship wasdriven by positive size-selective cannibalism removing large individuals. Hence, given a positive correlation between thedensity of victims and predation pressure by cannibals, size-dependent interactions between cannibals and their victimsmay wrongly be interpreted as patterns of density-dependent growth in the victim cohort. Overall, our results support theview that density-dependent resource-limitation in early life stages is rare. Still, patterns of density-dependent growth mayemerge, but from variation in size-selective predation pressure rather than density as such. Th is illustrates the importanceof taking overall population demography and predatory interactions into account when studying growth patterns amongrecruiting individuals.

  • 34.
    Huss, Magnus
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Byström, Pär
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Resource heterogeneity, diet shifts and intra-cohort competition: effects on size divergence in YOY fish2008In: Oecologia, ISSN 0029-8549, E-ISSN 1432-1939, Vol. 158, no 2, p. 249-257Article in journal (Refereed)
    Abstract [en]

    Most organisms exhibit a substantial size variation among individuals due to individual differences in experienced biotic and abiotic environmental conditions and because individuals undergo growth and development during most of their life time. One important issue in this context is how size variation within cohorts may develop over time. Here we tested the hypothesis, in gape-limited animals such as fish, that size divergence among individuals within a cohort depends on the opportunity to undergo size-dependent diet shifts, by allowing initially larger individuals to make an early diet shift when the first resource becomes limiting. We used young-of-the-year perch (Perca fluviatilis) as our study organism. Competitive intensity and the opportunity to undergo a diet shift from zooplankton to macroinvertebrates affected both mean growth rates and the extent to which inter-individual variation in growth was manifested. As predicted, increased competition combined with the presence of both zooplankton and benthic macroinvertebrates increased the degree of size variation. However, size divergence was also observed among individuals when only the initial resource, zooplankton, was available. We argue that only non-exploitative interactions, such as dominance structures and social interactions could have caused this latter pattern, as exploitative competition is expected to lead to size convergence due to the superior competitive ability of smaller individuals. Our results suggest that diet shifts are not a prerequisite for size divergence in animal cohorts and that dominance and social interactions may have similar effects on size variation within cohorts. Finally, development of size variation is suggested to have strong implications for overall cohort performance.

  • 35.
    Huss, Magnus
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Byström, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Strand, Åsa
    Eriksson, Lars-Ove
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Influence of growth history on the accumulation of energy reserves and winter mortality on young fish2008In: Canadian Journal of Fisheries and Aquatic Sciences, ISSN 0706-652X, E-ISSN 1205-7533, Vol. 65, no 10, p. 2149-2156Article in journal (Refereed)
    Abstract [en]

    In seasonal environments accumulated energy reserves are important to avoid starvation mortality during periods of low resource levels. Here we investigated patterns of energy accumulation and the importance of growth history for winter survival in young-of-the-year Eurasian perch (Perca fluviatilis). Under simulated winter conditions in aquaria’s we showed that high winter mortality most likely relate to the depletion of energy reserves in small perch. Correspondingly in a field study, using 4 lakes covering 3-6 lake years each, overwinter survival within cohorts was positively related to individual size. However, average size in autumn did not explain the variation in overwinter survival between cohorts. Instead we showed that seasonal growth history is an important factor. High growth rates late in season may increase cohort survival over winter irrespective of average size, related to a positive growth dependent increase in allocation to energy reserves when approaching winter. Mechanisms regulating within-season temporal dynamics of growth rates are therefore suggested to be important for overall cohort performance.

  • 36.
    Huss, Magnus
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Borcherding, Jost
    Heermann, Lisa
    Timing of the diet shift from zooplankton to macroinvertebrates and size at maturity determine whether normally piscivorous fish can persist in otherwise fishless lakes2013In: Freshwater Biology, ISSN 0046-5070, E-ISSN 1365-2427, Vol. 58, no 7, p. 1416-1424Article in journal (Refereed)
    Abstract [en]

    Using a size-structured population model, life-history information and records of piscivores in systems without prey fish, we analysed the role of the timing of shifting from small-to-large invertebrate prey types in regulating piscivore performance, especially under conditions of low availability of prey fish. Large invertebrate prey are generally absent or at low densities in pelagic habitats; consequently, pelagic piscivorous fish species with a poor ability to exploit zooplankton depend on prey fish in order to persist. In contrast, our model shows that abundant large invertebrate prey in the littoral habitat may allow littoral piscivores to persist in the absence of prey fish if they can shift diet from zooplankton to macroinvertebrates early in life. However, if the diet shift from zooplankton to macroinvertebrates is delayed, or density dependence reduces growth rate, the persistence of even littoral piscivorous fish species in the absence of other prey fish is severely constrained. Our results suggest that undergoing an early diet shift from zooplankton to macroinvertebrates may be necessary to reach sizes large enough to enable successful exploitation of the piscivorous niche. These insights can help to understand the persistence of piscivorous fish species, or their absence, in otherwise fishless lakes.

  • 37.
    Huss, Magnus
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Byström, Pär
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    The origin and development of individual size variation in early pelagic stages of fish2007In: Oecologia, ISSN 0029-8549, E-ISSN 1432-1939, Vol. 153, no 1, p. 57-67Article in journal (Refereed)
    Abstract [en]

    Size variation among individuals born at the same time in a common environment (within cohorts) is a common phenomenon in natural populations. Still, the mechanisms behind the development of such variation and its consequences for population processes are far from clear. We experimentally investigated the development of early within-cohort size variation in larval perch (Perca fluviatilis). Specifically we tested the influence of initial variation, resulting from variation in egg strand size, and intraspecific density for the development of size variation. Variation in egg strand size translated into variation in initial larval size and time of hatching, which, in turn, had effects on growth and development. Perch from the smallest egg strands performed on average equally well independent of density, whereas larvae originating from larger egg strands performed less well under high densities. We related this difference in density dependence to size asymmetries in competitive abilities leading to higher growth rates of groups consisting of initially small individuals under high resource limitation. In contrast, within a single group of larvae, smaller individuals grew substantially slower under high densities whereas large individuals performed equally well independent of density. As a result, size variation among individuals within groups (i.e. originating from the same clutch) increased under high densities. This result may be explained by social interactions or differential timing of diet shifts and a depressed resource base for the initially smaller individuals. It is concluded that to fully appreciate the effects of density-dependent processes on individual size variation and size-dependent growth, consumer feedbacks on resources need to be considered.

  • 38.
    Huss, Magnus
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    van Kooten, Tobias
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Intra-cohort cannibalism and size bimodality: a balance between hatching synchrony and resource feedbacks2010In: Oikos, ISSN 0030-1299, E-ISSN 1600-0706, Vol. 119, no 12, p. 2000-2011Article in journal (Refereed)
    Abstract [en]

    Cannibalistic interactions generally depend on the size relationship between cannibals and victims. In many populations, alarge enough size variation to allow for cannibalism may not only develop among age-cohorts but also within cohorts. Westudied the implications of variation in hatching period length and initial cohort size for the emergence of cannibalism andbimodal size distributions within animal cohorts using a physiologically structured population model. We found that thedevelopment of size bimodality was critically dependent on hatching period length, victim density and the presence of afeedback via shared resources. Cannibals only gained enough energy from cannibalism to accelerate in growth when victimdensity was high relative to cannibal density at the onset of cannibalism. Furthermore, we found that the opportunity forearly hatchers to initially feed on an unexploited resource increases the likelihood both for cannibalism to occur and sizebimodality to develop. Once cannibals accelerated in growth relative to victims size bimodality, reduced victim numbersand relaxed resource competition resulted. Th us, in addition to that cannibals profi ted from cannibalism through energyextraction, their potential victims also benefi ted as the resource recovered due to cannibal thinning. To ensure recruitmentsuccess, it can be critical that a few individuals can accelerate in growth and reach a size large enough to escape sizedependentpredation and winter starvation. Hence, within-cohort cannibalism may be a potentially important mechanismto explain recruitment variation especially for cannibalistic species in temperate climates with strong seasonality. However,the scope for size bimodality to develop as a result of cannibalism may be limited by low victim densities and size andfood-dependent growth rates.

  • 39.
    Jansson, Mats
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    de Roos, André M
    Jones, Roger I
    Tranvik, Lars J
    Terrestrial carbon and intraspecific size-variation shape lake ecosystems2007In: Trends in Ecology & Evolution, Vol. 22, no 6, p. 316-322Article in journal (Refereed)
    Abstract [en]

    Conceptual models of lake ecosystem structure and function have generally assumed that energy in pelagic systems is derived from in situ photosynthesis and that its use by higher trophic levels depends on the average properties of individuals in consumer populations. These views are challenged by evidence that allochthonous subsidies of organic carbon greatly influence energy mobilization and transfer and the trophic structure of pelagic food webs, and that size variation within consumer species has major ramifications for lake community dynamics and structure. These discoveries represent conceptual shifts that have yet to be integrated into current views on lake ecosystems. Here, we assess key aspects of energy mobilization and size-structured community dynamics, and show how these processes are intertwined in pelagic food webs.

  • 40.
    Jäger, Christoph G.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Aquatic Ecosystems Analysis and Management, Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany.
    Vrede, Tobias
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Jansson, Mats
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Interactions between metazoans, autotrophs, mixotrophs and bacterioplankton in nutrient-depleted high DOC environments: a long-term experiment2014In: Freshwater Biology, ISSN 0046-5070, E-ISSN 1365-2427, Vol. 59, no 8, p. 1596-1607Article in journal (Refereed)
    Abstract [en]

    1. Humic lakes with a high external supply of DOC and low input of nutrients can often support a high biomass of metazoan zooplankton. In such lakes, autotrophic algae compete with bacteria for inorganic nutrients, but bacteria support mixotrophic growth. Consequently, planktonic communities are often dominated by mixotrophic flagellates, while obligate autotrophic phytoplankton occurs in low numbers for extended periods.

    2. To test the importance of autotrophic phytoplankton and mixotrophic flagellates as food resources for metazoan grazers and, in turn, the feedback effects of grazers on basal food-web interactions, we conducted a long-term experiment where we simulated abiotic resource relationships of humic lakes (high DOC [glucose] and low P input). We examined the population dynamics of Daphnia galeata when inoculated in systems with autotrophic algae only, mixotrophic algae only and a mixture of autotrophic and mixotrophic algae, and how the systems changed after the inoculation of Daphnia. All combinations were run at high-and low-light conditions to analyse the effects of light on food quantity and quality.

    3. Daphnia grew to high densities only when mixotrophs were present at high-light conditions and showed no or only weak growth at low-light conditions or with autotrophs as the only food source.

    4. Autotrophic algae and bacteria showed a strong competition for nutrients. Autotrophic algae were released from competition for nutrients after Daphnia grazed on bacteria, which led to a probable change of the bacteria community to less edible but less competitive taxa. As a consequence, there was a mutualistic interaction between autotrophs and mixotrophs before Daphnia were introduced which turned into competition after Daphnia inoculation.

    5. We suggest that mixotrophic flagellates can be a critical resource for cladocerans and thereby also have a cascading effect on higher trophic levels, and cladocerans, in turn, have important indirect effects on basal planktonic food webs; hence, both might affect whole lake ecosystems.

  • 41.
    Karlsson, Jan
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Byström, Pär
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Ask, Jenny
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Ask, Per
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Jansson, Mats
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Light limitation of nutrient-poor lake ecosystems2009In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 460, p. 506-509Article in journal (Refereed)
    Abstract [en]

    Productivity denotes the rate of biomass synthesis in ecosystems and is a fundamental characteristic that frames ecosystem function and management. Limitation of productivity by nutrient availability is an established paradigm for lake ecosystems1, 2, 3. Here, we assess the relevance of this paradigm for a majority of the world's small, nutrient-poor lakes, with different concentrations of coloured organic matter4, 5. By comparing small unproductive lakes along a water colour gradient, we show that coloured terrestrial organic matter controls the key process for new biomass synthesis (the benthic primary production) through its effects on light attenuation. We also show that this translates into effects on production and biomass of higher trophic levels (benthic invertebrates and fish). These results are inconsistent with the idea that nutrient supply primarily controls lake productivity, and we propose that a large share of the world's unproductive lakes, within natural variations of organic carbon and nutrient input, are limited by light and not by nutrients. We anticipate that our result will have implications for understanding lake ecosystem function and responses to environmental change. Catchment export of coloured organic matter is sensitive to short-term natural variability and long-term, large-scale changes, driven by climate and different anthropogenic influences6, 7. Consequently, changes in terrestrial carbon cycling will have pronounced effects on most lake ecosystems by mediating changes in light climate and productivity of lakes.

  • 42.
    Lövgren, Johan
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Reinikainen, Marko
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Persson, Lennart
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Allochtonous input and trophic level heterogeneity: impact on an aquatic food web2006In: Oikos, ISSN 0030-1299, E-ISSN 1600-0706, Vol. 115, no 1, p. 141-147Article in journal (Refereed)
    Abstract [en]

    The impact of food web complexity in open and closed food webs was explored experimentally under controlled laboratory conditions. We used an aquatic model community consisting of two forms of primary producers, phytoplankton (Scenedesmus obtusiuscusculus) and periphyton (Nitzschia perminuta) and two types of consumers, Daphnia pulex feeding on phytoplankton and Chydorous sphaericus feeding on both periphyton and phytoplankton. Three different food webs all having the phytoplankton and periphyton, but having either one of the consumers or both were set up. These food webs were studied in an open and closed treatment. In the open treatment, phytoplankton was continuously flowing through the aquaria whereas in the closed system all the phytoplankton was delivered at the start of the experiment.

    D. pulex had a positive effect on the density of C. sphaericus in both the open and closed treatments. In the open treatment C. sphaericus increased to very high numbers and was able to depress phytoplankton and thereby negatively affect D. pulex. Our study shows that the explicit handling of the population dynamics of both grazers allowed us to show how a compensatory increase in one primary producer due to increased grazing on another primary producer creates a negative feedback between consumers: C. sphaericus increased and negatively affected D. pulex.

  • 43.
    Nilsson, Karin A.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.