Umeå University's logo

umu.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Liu, Kui
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Wahlberg, Patrik
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Leonardsson, Göran
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Hägglund, Anna-Carin
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Ny, Annelii
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Bodén, Ida
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Wibom, Carin
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Lund, Leif R
    Finsen Laboratory, Rigshospitalet, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
    Ny, Tor
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Successful ovulation in plasminogen-deficient mice treated with the broad-spectrum matrix metalloproteinase inhibitor galardin.2006In: Developmental Biology, ISSN 0012-1606, E-ISSN 1095-564X, Vol. 295, no 2, p. 615-622Article in journal (Refereed)
    Abstract [en]

    Many studies have suggested the hypothesis that the plasminogen activator (PA) system and the matrix metalloproteinase (MMP) system, either separately or in combination, may provide the proteolytic activity that is required for rupture of the follicular wall at the time of ovulation. Our recent studies on ovulation in plasminogen (plg)-deficient mice have, however, shown that plasmin is not required for normal ovulation, leading us to the hypothesis that MMPs may be a more important source of proteolysis for this process. To investigate the role of MMPs and also the possibility of a functional overlap or synergy between the MMP and PA systems during ovulation, we have studied ovulation efficiency in wild-type and plg-deficient mice treated with the broad-spectrum MMP inhibitor galardin. We found that in both wild-type mice and heterozygous plg-deficient (plg(+/-)) mice that had been treated with galardin prior to ovulation, there was a mild (18-20%) reduction in ovulation efficiency. Surprisingly, galardin treatment of plg-deficient (plg(-/-)) mice only caused an additional 14% reduction in ovulation efficiency as compared to vehicle-treated plg(-/-) mice. Our data therefore suggest that although MMPs may play a role in degradation of the follicular wall, they may not be obligatory for ovulation. In contrast to previous studies on tissue remodeling during wound heating and placental development, we have demonstrated that there is no obvious functional overlap or synergy between the PA and MMP systems, which has previously been thought to be essential for the ovulatory process.

  • 2.
    Wahlberg, Patrik
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Bodén, Ida
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Liu, Kui
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Ny, Tor
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Plasminogen is required for normal progesterone production in the mouseManuscript (Other academic)
  • 3.
    Wahlberg, Patrik
    et al.
    Umeå University, Faculty of Medicine, Medical Biochemistry and Biophsyics.
    Bodén, Ida
    Paulsson, Josefin
    Lund, Leif R
    Liu, Kui
    Umeå University, Faculty of Medicine, Medical Biochemistry and Biophsyics.
    Ny, Tor
    Umeå University, Faculty of Medicine, Medical Biochemistry and Biophsyics.
    Functional corpora lutea are formed in matrix metalloproteinase inhibitor-treated plasminogen-deficient mice.2007In: Endocrinology, ISSN 0013-7227, Vol. 148, no 3, p. 1226-34Article in journal (Refereed)
    Abstract [en]

    The extended Förster theory (EFT) is for the first time applied to the quantitative determination of the intramolecular distances in proteins. It is shown how the EFT (J. Chem. Phys., 1996, 105, 10896) can be adapted to the analyses of fluorescence depolarisation experiments based on the time-correlated single photon counting technique (TCSPC). The protein system studied was the latent form of plasminogen activator inhibitor type I (PAI-1), which was mutated and labelled by the thiol reactive BODIPY® derivative {N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl iodoacetamide}. The energy migration occurs within pairs of photophysically identical donor groups that undergo reorientational motions on the timescales of energy migration and fluorescence relaxation. Unlike all models currently used for analysing fluorescence TCSPC data, the EFT explicitly accounts for the time-dependent reorientations that influence the rate of electronic energy transfer/migration in a complex manner. The complexity is related to the 2 problem, which has been discussed for years. The EFT brings the analyses of DDEM data to the same level of molecular description as in ESR and NMR spectroscopy, i.e. it yields microscopic information about the reorientation correlation times, the order parameters, as well as inter-chromophoric distances.

  • 4.
    Wahlberg, Patrik
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Bodén, Ida
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Paulsson, Josefin
    Ny, Tor
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    A synchronized gonadotropin-induced corpus luteum model in the mouseManuscript (preprint) (Other academic)
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf