Umeå University's logo

umu.sePublications
Change search
Refine search result
123 1 - 50 of 138
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahlinder, Jon
    et al.
    Division of CBRN Defence and Security, FOI, Swedish Defence Research Agency, Umeå, Sweden.
    Mathisen, Peter
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Sjödin, Andreas
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Division of CBRN Defence and Security, FOI, Swedish Defence Research Agency, Umeå, Sweden.
    Nilsson, Elin
    Division of CBRN Defence and Security, FOI, Swedish Defence Research Agency, Umeå, Sweden.
    Forsman, Mats
    Division of CBRN Defence and Security, FOI, Swedish Defence Research Agency, Umeå, Sweden.
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Thelaus, Johanna
    Division of CBRN Defence and Security, FOI, Swedish Defence Research Agency, Umeå, Sweden.
    Oligotyping reveals divergent responses of predation resistant bacteria to aquatic productivity and plankton compositionManuscript (preprint) (Other academic)
    Abstract [en]

    Predation-resistance has been suggested to be a key for persistence of pathogenic bacteria in aquatic environments. Little is known about driving factors for different types of protozoa resistant bacteria (PRB). We studied if presence of PRB is linked to specific plankton taxa, the aquatic nutrient state, or predation pressure on bacteria. Nineteen freshwater systems were sampled and analyzed for PRB, plankton composition and physicochemical variables. Three PRB genera were identified; Pseudomonas, Mycobacterium and Rickettsia. Use of minimum entropy decomposition algorithm and phylogenetic analysis showed that different nodes (representing OTUs of high taxonomic resolution) matched to environmental isolates of the three genera. Links between the PRB genera and specific plankton taxa were found, but showed different relationships depending on if 18S rRNA OTU or microscopy data were used in the analysis. Mycobacterium spp. was negatively correlated to aquatic nutrient state, while Pseudomonas showed the opposite pattern. Rickettsia spp. was positively related to predation pressure on bacteria. Both Mycobacterium and Rickettsia were more abundant in systems with high eukaryotic diversity, while Pseudomonas occurred abundantly in waters with low prokaryotic diversity. The different drivers may be explained by varying ecological strategies, where Mycobacterium and Rickettsia are slow growing and have an intracellular life style, while Pseudomonas is fast growing and opportunistic. Here we give an insight to the possibilities of newly advanced methods such as sequencing and oligotyping to link potential pathogens with biomarkers. This as a tool to assist predictions of the occurrence and persistence of environmental pathogens.

  • 2.
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Ett ekosystem i ständig förändring2014In: Havsutsikt Tema Hav och Klimat, no 2, p. 9-11Article in journal (Other (popular science, discussion, etc.))
  • 3.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Ahlinder, J.
    Mathisen, Peter
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Hagglund, M.
    Backman, S.
    Nilsson, E.
    Sjodin, A.
    Thelaus, J.
    Predators and nutrient availability favor protozoa-resisting bacteria in aquatic systems2018In: Scientific Reports, E-ISSN 2045-2322, Vol. 8, article id 8415Article in journal (Refereed)
    Abstract [en]

    The long co-existence of bacteria and protozoa has led to the development of bacterial protozoa resistance strategies, which are suggested to serve as drivers for the evolution of pathogenic bacteria. However, the ecological mechanisms underpinning selection for protozoa-resistance in aquatic bacteria are poorly known. To assess the role of nutrient availability and predation-pressure on selection for protozoa-resisting bacteria (PRB), an enrichment-dilution experiment was designed using laboratory microcosms containing natural lake water. PRB was monitored by screening 16S rRNA amplicon sequence data for reads assigned to bacteria that previously has been shown to resist degradation by amoebae. To estimate the effects of the microbial food web dynamics (microscopy of; heterotrophic bacteria, phytoplankton, protozoa and rotifers) and physicochemical variables on the PRB abundance in the study system, a joint species distribution modelling approach was used. The predation-pressure (ratio between predator and bacterial biomass) had a positive effect on the abundance of the PRB genus Mycobacterium, while perturbation (enrichment and dilution) favored the PRB genus Pseudomonas that dominated the bacterial community in the disturbed systems. Our results show that PRB with different ecological strategies can be expected in water of high and intermediate nutrient levels and after major disturbances of an aquatic system.

    Download full text (pdf)
    fulltext
  • 4.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ahlinder, Jon
    Division of CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE-901 82 Umeå, Sweden.
    Mathisen, Peter
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Bäckman, Stina
    Division of CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE-901 82 Umeå, Sweden.
    Nilsson, Elin
    Division of CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE-901 82 Umeå, Sweden.
    Hammarström, Moa
    Division of CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE-901 82 Umeå, Sweden.
    Sjödin, Andreas
    Division of CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE-901 82 Umeå, Sweden.
    Thelaus, Johanna
    Division of CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE-901 82 Umeå, Sweden.
    Aquatic ecosystems at risk for occurrence of pathogenic bacteriaManuscript (preprint) (Other academic)
    Abstract [en]

    Pathogenic bacteria occur naturally in aquatic systems. Co-existence of bacteria and protozoa has led to development of predation resistance strategies, which is suggested to serve as a driver for evolution of pathogenic bacteria. However, the ecological mechanisms for selection for different types of predation resistant and pathogenic bacteria are poorly known. To disentangle effects from nutrient availability and protozoan predation pressure on the occurrence of varying predation resistant bacterial genera, an enrichment-dilution experiment was performed where an aquatic bacterial community was exposed to protozoa. Operational taxonomical units, specific for three predation resistant bacterial genera were identified; Pseudomonas, Rickettsia and Mycobacterium. These genera are also known to harbor species that are potentially pathogenic to mammals. Rickettsia and Mycobacterium were promoted where protozoa were abundant and the predation pressure high, while Pseudomonas dominated the bacterial community at the highest nutrient level where the predation pressure on bacteria were low. Our study thus indicates that waters of all nutrient states can harbor pathogenic bacteria, but that bacteria with different ecological strategies occur depending on nutrient level and perturbation. The generative model approach presented here provide a possibility to integrate environmental data in prediction models of pathogens in complex environments.

  • 5.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Andersson, Anders
    Karlson, Bengt
    DNA-streckkodning kompletterar traditionell planktonanalys2020In: Sveriges vattenmiljö - KunskapsbankArticle, review/survey (Other (popular science, discussion, etc.))
    Abstract [sv]

    Att filtrera några deciliter havsvatten och analysera DNA-innehållet ger snabbt svaret på vilka växtplankton som finns i våra hav. Det låter kanske som science fiction, men målet för projektet "DNA-streckkodning av marina växtplankton" är att tekniken ska vara redo för den svenska miljöövervakningen redan 2022.

  • 6.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Brugel, Sonia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Paczkowska, Joanna
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Rowe, Owen F.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland.
    Figueroa, Daniela
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Kratzer, S.
    Legrand, C.
    Influence of allochthonous dissolved organic matter on pelagic basal production in a northerly estuary2018In: Estuarine, Coastal and Shelf Science, ISSN 0272-7714, E-ISSN 1096-0015, Vol. 204, p. 225-235Article in journal (Refereed)
    Abstract [en]

    Phytoplankton and heterotrophic bacteria are key groups at the base of aquatic food webs. In estuaries receiving riverine water with a high content of coloured allochthonous dissolved organic matter (ADOM), phytoplankton primary production may be reduced, while bacterial production is favoured. We tested this hypothesis by performing a field study in a northerly estuary receiving nutrient-poor, ADOM-rich riverine water, and analyzing results using multivariate statistics. Throughout the productive season, and especially during the spring river flush, the production and growth rate of heterotrophic bacteria were stimulated by the riverine inflow of dissolved organic carbon (DOC). In contrast, primary production and photosynthetic efficiency (i.e. phytoplankton growth rate) were negatively affected by DOC. Primary production related positively to phosphorus, which is the limiting nutrient in the area. In the upper estuary where DOC concentrations were the highest, the heterotrophic bacterial production constituted almost 100% of the basal production (sum of primary and bacterial production) during spring, while during summer the primary and bacterial production were approximately equal. Our study shows that riverine DOC had a strong negative influence on coastal phytoplankton production, likely due to light attenuation. On the other hand DOC showed a positive influence on bacterial production since it represents a supplementary food source. Thus, in boreal regions where climate change will cause increased river inflow to coastal waters, the balance between phytoplankton and bacterial production is likely to be changed, favouring bacteria. The pelagic food web structure and overall productivity will in turn be altered.

    Download full text (pdf)
    fulltext
  • 7.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Grinienė, Evelina
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Marine Research Institute, Klaipėda University, Klaipėda, Lithuania.
    Berglund, Åsa M. M.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Brugel, Sonia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Gorokhova, Elena
    Department of Environmental Science, Stockholm University, Stockholm, Sweden.
    Figueroa, Daniela
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Gallampois, Christine
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Ripszam, Matyas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Tysklind, Mats
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Microbial food web changes induced by terrestrial organic matter and elevated temperature in the coastal northern Baltic Sea2023In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 10, article id 1170054Article in journal (Refereed)
    Abstract [en]

    Climate change has been projected to cause increased temperature and amplified inflows of terrestrial organic matter to coastal areas in northern Europe. Consequently, changes at the base of the food web favoring heterotrophic bacteria over phytoplankton are expected, affecting the food web structure. We tested this hypothesis using an outdoor shallow mesocosm system in the northern Baltic Sea in early summer, where the effects of increased temperature (+ 3°C) and terrestrial matter inputs were studied following the system dynamics and conducting grazing experiments. Juvenile perch constituted the highest trophic level in the system, which exerted strong predation on the zooplankton community. Perch subsequently released the microbial food web from heavy grazing by mesozooplankton. Addition of terrestrial matter had a stronger effect on the microbial food web than the temperature increase, because terrestrial organic matter and accompanying nutrients promoted both heterotrophic bacterial production and phytoplankton primary production. Moreover, due to the shallow water column in the experiment, terrestrial matter addition did not reduce the light below the photosynthesis saturation level, and in these conditions, the net-autotrophy was strengthened by terrestrial matter enrichment. In combination with elevated temperature, the terrestrial matter addition effects were intensified, further shifting the size distribution of the microbial food web base from picoplankton to microphytoplankton. These changes up the food web led to increase in the biomass and proportion of large-sized ciliates (>60 µm) and rotifers. Despite the shifts in the microbial food web size structure, grazing experiments suggested that the pathway from picoplankton to nano- and microzooplankton constituted the major energy flow in all treatments. The study implies that the microbial food web compartments in shallow coastal waters will adjust to climate induced increased inputs of terrestrial matter and elevated temperature, and that the major energy path will flow from picoplankton to large-sized ciliates during the summer period.

    Download full text (pdf)
    fulltext
  • 8.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Hansen, W
    Wänstrand, I
    Huseby, S
    Wikner, Johan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Strategi för kontrollerande övervakning av kustvatten i Bottenhavets vattendistrikt2008Report (Refereed)
  • 9.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Hansen, Wenche
    Länsstyrelsen Västernorrland.
    Wänstrand, Ingrid
    Länsstyrelsen Gävleborg.
    Huseby, Siv
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Wikner, Johan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Strategi för kontrollerande övervakning av Bottenhavets vattendistrikt2008Report (Other academic)
    Abstract [sv]

    Ett pelagialprogram har tagits fram för övervakning i relativt opåverkade referensområden i kustvattentyperna 16 t.o.m.19 i Bottemhavet. Programmet bör kunna ligga till grund för uppföljning av internationella, nationella och regionala miljömål samt följa upp ekologisk status. Den rumsliga variationen samt mellanårsvariationen hos pelagiala variabler i Bottenhavsområdet har använts som utgångspunkt för att beräkna provtagningsbehovet. Det föreslagna programmet innebär att mellan 48 och 60 provtagningar årsperiod, varefter ekologisk status kan bedömas. Designen gör det möjligt att med 80 % säkerhet bedöma ekologisk status med mätdata som ligger minst 20 % från klassgränserna. Mätprogrammet är designat för provtagningar -årsperiod. Stationer har slumpats ut i de olika typerna, och förslag på årliga provtagningslokaler anges i rapporten. Eftersom djupet vid de olika stationerna varierar, bör de flesta pelagiala variablerna provtas vid ett diskret djup i övre delen av vattenmassan, t.ex. 1 m djup. Av vetenskapliga och ekonomiska skäl är det viktigt att pelagialprogrammet samordnas för hela Bottenhavet.

    För mjukbottenfauna bedöms det befintliga integrerade programmet för trendanalys i Bottenhavet kunna tillgodose Vattendirektivets behov för kontrollerande övervakning i distriktet. Detta under förutsättning att Sundsvallsbuktens program fortsätter och att de nya nationella och regionala provtagningsområdena i södra Bottenhavet (Gräsö) etableras och drivs. Dimensioneringen av nuvarande nationellt och regionalt bottenfaunaprogram och områdesövervakning men har även visat sig vara väl anpassat för bedömningar inom ramen för Vattendirektivet. Enligt bedömningsgrunden bör minst 5 stationer användas för klassning av ekologisk status. Dessa stationer måste dock inte ligga inom samma vattenförekomst, utan kan vara lokaliserade i angränsande vattenförekomster. Den ekologiska statusen för mjukbottenfauna i enskilda vattenförekomster klassas genom extrapolering med hjälp av data från närbelägna områden med liknande bottenmiljö och påverkansgrad.

    Befintlig fiskebeståndsövervakning föreslås fortlöpa för att möjliggöra uppföljning av förändringar. En utökning av antalet övervakningsområden föreslås dock för att upprätta minst ett referensområde per inre och yttre kustvattentyp. En kombination av stratifierad och slumpmässig övervakning av fiskebestånden enligt nuvarande strategi föreslås, där djupintervallen stratifieras medan stationerna slumpas ut i respektive djupintervall.

    Provfiske och provtagning för miljögiftsanalys av fisk bör samordnas till samma provtagningstillfälle. Vidare bör den modell för samfinansiering och samordning som idag tillämpas av kustlänen i Bottniska viken för övervakning av fiskbestånd, samt och miljögiftsövervakning av fisk, fortlöpa även framöver.

    De ämnen som ingår i det pågående nationella programmet för miljögifter i fisk bör mätas även i de nya föreslagna områdena. När EU:s dotterdirektiv för prioriterade ämnen är beslutat och Vattenmyndigheterna fastställt miljökvalitetsnormer för särskilda förorenande ämnen, bör en översyn göras och ytterligare ämnen som är aktuella för Bottenhavet införlivas i övervakningsprogrammet. Miljögiftsövervakning i fisk bedöms kunna mätas med ett maximalt avstånd på 75 km mellan stationsområdena. Bedömning och extrapolera mätvärdena.

    För samtliga delprogram har en grova uppskattningar av kostnader för genomförandet gjorts.

    Download full text (pdf)
    Samordnat Mätprogram Bottenhavet
  • 10.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Höglander, Helena
    Karlsson, Chatarina
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Huseby, Siv
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Key role of phosphorus and nitrogen in regulating cyanobacterial community composition in the northern Baltic Sea2015In: Estuarine, Coastal and Shelf Science, ISSN 0272-7714, E-ISSN 1096-0015, Vol. 164, p. 161-171Article in journal (Refereed)
    Abstract [en]

    Despite cyanobacteria being a key phytoplankton group in the Baltic Sea, the factors governing their community structure are still poorly understood. Here, we studied the occurrence of the orders Chroococcales, Oscillatoriales and Nostocales, and potentially explanatory variables at five locations in the northern Baltic Sea from June–September, 1998–2012. Cyanobacteria constituted 1–36% of the total phytoplankton biomass along the north–south gradient. In the Bothnian Bay, Chroococcales and Oscillatoriales dominated the cyanobacterial community, whereas in the Bothnian Sea and northern Baltic Proper, Nostocales was the dominant group. The dominance of Chroococcales was coupled to low salinity and low total phosphorus, whereas Oscillatoriales correlated with high total nitrogen and low salinity. Nostocales correlated to high total phosphorus, inorganic phosphorus and salinity. Chroococcales showed an increase over time in the offshore Bothnian Bay, whereas Nostocales increased in the coastal Bothnian Sea and coastal Baltic Proper. The increase of Nostocales in the coastal Bothnian Sea was explained by a rise in total phosphorus and decrease in dissolved inorganic nitrogen compared to an increase of total nitrogen and phosphorus in the coastal Baltic Proper. No significant trends were observed in the cyanobacterial community in the offshore Bothnian Sea and the offshore northern Baltic Proper. We concluded that Chroococcales may be a useful indicator for increased phosphorus levels in waters with low phosphorus concentrations, whereas Nostocales could be used as a quality indicator for increasing phosphorus concentrations in waters with low inorganic N/P ratios (<20), such as in the coastal Bothnian Sea and Baltic Proper.

  • 11.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Joanna, Paczkowska
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Brugel, Sonia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Rowe, Owen
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Figueroa, Daniela
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Kratzer, Susanne
    Stockholm University Institutionen för ekologi miljö och botanik 106 91 Stockholm.
    Marked impact of allochthonous dissolved organic matter on estuarine primary and bacterial productionManuscript (preprint) (Other academic)
  • 12.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Jurgensone, Iveta
    Rowe, Owen F.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Simonelli, Paolo
    Bignert, Anders
    Lundberg, Erik
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Can Humic Water Discharge Counteract Eutrophication in Coastal Waters?2013In: PLOS ONE, E-ISSN 1932-6203, Vol. 8, no 4, p. e61293-Article in journal (Refereed)
    Abstract [en]

    A common and established view is that increased inputs of nutrients to the sea, for example via river flooding, will cause eutrophication and phytoplankton blooms in coastal areas. We here show that this concept may be questioned in certain scenarios. Climate change has been predicted to cause increased inflow of freshwater to coastal areas in northern Europe. River waters in these areas are often brown from the presence of high concentrations of allochthonous dissolved organic carbon ( humic carbon), in addition to nitrogen and phosphorus. In this study we investigated whether increased inputs of humic carbon can change the structure and production of the pelagic food web in the recipient seawater. In a mesocosm experiment unfiltered seawater from the northern Baltic Sea was fertilized with inorganic nutrients and humic carbon (CNP), and only with inorganic nutrients (NP). The system responded differently to the humic carbon addition. In NP treatments bacterial, phytoplankton and zooplankton production increased and the systems turned net autotrophic, whereas the CNP-treatment only bacterial and zooplankton production increased driving the system to net heterotrophy. The size-structure of the food web showed large variations in the different treatments. In the enriched NP treatments the phytoplankton community was dominated by filamentous >20 mu m algae, while in the CNP treatments the phytoplankton was dominated by picocyanobacteria <5 mu m. Our results suggest that climate change scenarios, resulting in increased humic-rich river inflow, may counteract eutrophication in coastal waters, leading to a promotion of the microbial food web and other heterotrophic organisms, driving the recipient coastal waters to net-heterotrophy.

    Download full text (pdf)
    fulltext
  • 13.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Karlsson, Chatarina
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Hajdu, Susanna
    Stockholms universitet.
    Höglander, Helena
    Stockholms universitet.
    Skjevik, Ann-Turi
    SMHI.
    Pelagial biologi / växtplankton2010In: Havet: om miljötillståndet i svenska havsområden. 2010 / [ed] Kristina Viklund (huvudredaktör) Ulrika Brenner, Annika Tidlund, Marie Svärd, Stockholm: Naturvårdsverket, 2010, p. 32-33Chapter in book (Other academic)
  • 14.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Karlsson, Chatarina
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Huseby, Siv
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Höglander, Helena
    Mer fosfor ger mer cyanobakterier i norra Östersjön2013In: Havet, p. 51-54Article, review/survey (Other academic)
    Abstract [sv]

    I flera områden i norra Östersjön har cyanobakterierna ökat under de senaste tio till femton åren. I Bottenhavets och Egentliga Östersjöns kustområden ökar de kvävefixerande cyanobakterierna. I Bottenvikens utsjö är det den småcelliga och kolonibildande gruppen Chroococcales som blir fler. Förändringarna beror i flera fall på ökande halter av fosfor.

  • 15.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Meier, H.E. Markus
    Ripszam, Matyas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine.
    Rowe, Owen
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Wikner, Johan
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Haglund, Peter
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Eilola, Kari
    Legrand, Catherine
    Figueroa, Daniela
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Paczkowska, Joanna
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Lindehoff, Elin
    Tysklind, Mats
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Elmgren, Ragnar
    Projected future climate change and Baltic Sea ecosystem management2015In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 44, no Suppl 3, p. S345-S356Article in journal (Refereed)
    Abstract [en]

    Climate change is likely to have large effectson the Baltic Sea ecosystem. Simulations indicate 2–4 Cwarming and 50–80 % decrease in ice cover by 2100.Precipitation may increase *30 % in the north, causingincreased land runoff of allochthonous organic matter(AOM) and organic pollutants and decreased salinity.Coupled physical–biogeochemical models indicate that, inthe south, bottom-water anoxia may spread, reducing codrecruitment and increasing sediment phosphorus release,thus promoting cyanobacterial blooms. In the north,heterotrophic bacteria will be favored by AOM, whilephytoplankton production may be reduced. Extra trophiclevels in the food web may increase energy losses andconsequently reduce fish production. Future managementof the Baltic Sea must consider the effects of climatechange on the ecosystem dynamics and functions, as wellas the effects of anthropogenic nutrient and pollutant load.Monitoring should have a holistic approach, encompassingboth autotrophic (phytoplankton) and heterotrophic (e.g.,bacterial) processes.

    Download full text (pdf)
    fulltext
  • 16.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Meier, Markus
    SMHI och Stockholms universitet.
    Hur påverkas Östersjön?2010In: Sverige i nytt klimat: våtvarm utmaning / [ed] Birgitta Johansson, Stockholm: Forskningsrådet Formas, 2010, p. 117-132Chapter in book (Other academic)
  • 17.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Samuelsson, K
    Haecky, P
    Albertsson, J
    Changes in the pelagic microbial food web due to artificial eutrophication2006In: Aquat Ecol, Vol. 40, p. 299-313Article in journal (Refereed)
  • 18.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Selstam, Eva
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Hagström, Åke
    Vertical transport of lipid in seawater1993In: Marine Ecology Progress Series, ISSN 0171-8630, E-ISSN 1616-1599, Vol. 98, no 1-2, p. 149-155Article in journal (Refereed)
    Abstract [en]

    Lipids in seawater act as solvents and transporters of lipophilic organic pollutants. To investigate a possible transport route of lipophilic pollutants, the vertical flux of lipid was quantified during an annual cycle in the northern Baltic Sea. The lipid content in both sedimenting material and different size fractions of seawater was analyzed. During the year, 8 g lipid m-2 sedimented out from the photic zone to the benthic system. The sedimentation of lipid accounted for 300 to 400 % of the average standing stock of pelagic lipid and was concentrated in the spring bloom period (April-June) when 70 % of the total lipid sedimentation occurred. About 30 % of the produced pelagic lipid settled out from the system. In seawater the lipid maximum occurred at the end of the spring bloom, shortly after nutrient depletion, indicating a stress response in the algae. Since lipid sedimentation is concentrated in the spring bloom, removal of lipophilic organic pollutants may be important during this period.

  • 19.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Tamminen, Timo
    Lehtinen, Sirpa
    Jürgens, Klaus
    Labrenz, Matthias
    Viitasalo, Markku
    The pelagic food web2017In: Biological oceanography of the Baltic sea / [ed] Pauline Snoeijs, Hendrik Schubert, Teresa Radziejewska, Dordrecht: Springer Netherlands, 2017, p. 281-332Chapter in book (Refereed)
    Abstract [en]
    1. Environmental drivers and food web structure in the pelagic zone vary from south to north in the Baltic Sea. 
    2. While nitrogen is generally the limiting nutrient for primary production in the Baltic Sea, phosphorus is the limiting nutrient in the Bothnian Bay. 
    3. In the Gulf of Bothnia the food web is to a large extent driven by terrestrial allochthonous material, while autochthonous production dominates in the other parts of the Baltic Sea. 
    4. Changes in bacterioplankton, protist and zooplankton community composition from south to north are mainly driven by salinity. 
    5. Bacteria are crucial constituents of the pelagic food web (microbial loop) and in oxygen-poor and anoxic bottom waters where they mediate element transformations. 
    6. Diatoms and dinoflagellates are the major primary producers in the pelagic zone. Summer blooms of diazotrophic (nitrogen-fixing) filamentous cyanobacteria are typical of the Baltic Sea, especially in the Baltic Sea proper and the Gulf of Finland. 
    7. The mesozooplankton (mainly copepods and cladocerans) channel energy from primary producers and the microbial food web to fish and finally to the top predators in the pelagic system (waterbirds and mammals). 
    8. Herring and sprat populations are affected by the foraging intensity of their main predator (cod), and therefore the environmental conditions that affect cod may also influence mesozooplankton due to food web effects "cascading down the food web". 
    9. Anthropogenic pressures, such as overexploitation of fish stocks, eutrophication, climate change, introduction of non-indigenous species and contamination of top predators by hazardous substances, cause changes in the pelagic food web that may have consequences for the balance and stability of the whole ecosystem.
  • 20.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Wikner, Johan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Klimatförändringar kan leda till mindre fisk i havet2016In: Havet: om miljötillståndet i svenska havsområden. 2015/2016, Göteborg: Havs- och vattenmyndigheten , 2016, p. 25-28Chapter in book (Other academic)
  • 21.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Wikner, Johan
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Pelagisk biologi2004In: Bottniska viken: årsrapport från den marina miljöövervakningen. 2003, Skydd av havsområden gagnar fisken, Hörnefors: Umeå marina forskningscentrum (UMF) , 2004, p. 11-13Chapter in book (Refereed)
  • 22.
    Andersson, Agneta
    et al.
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Zhao, Li
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Brugel, Sonia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Figueroa, Daniela
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Huseby, Siv
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Metabarcoding vs Microscopy - comparison of methods to monitor phytoplankton communities2023In: ACS - ES & T Water, E-ISSN 2690-0637, Vol. 3, no 8, p. 2671-2680Article in journal (Other academic)
    Abstract [en]

    Phytoplankton are used worldwide to monitor environmental status in aquatic systems. Long-time series of microscopy-analyzed phytoplankton are available from many monitoring stations. The microscopy-method is however time consuming and has short-comings. DNA metabarcoding has been suggested as an alternative method, but the consistency between different methods need further investigation. We performed a comparative study of microscopy and metabarcoding analyzing micro- and nanophytoplankton. For metabarcoding, 25-1000 ml seawater were filtered, DNA extracted and the 18S and 16S rRNA gene amplicons sequenced. For microscopy, based on the Utermöhl method we evaluated the use of three metrics: abundance, biovolume and carbon biomass. At the genus, species, and unidentified taxa level, metabarcoding generally showed higher taxonomic diversity than microscopy, and diversity was already captured at the lowest filtration volume tested, 25 ml. Metabarcoding and microscopy displayed relatively similar distribution pattern at the group level. The results showed that the relative abundances of the 18S rRNA amplicon at the group level best fitted the microscopy carbon biomass metric. The results are promising for implementing DNA metabarcoding as a complement to microscopy in phytoplankton monitoring, especially if databases would be improved and group level indexes could be applied to classify the environmental state of water bodies.

    Download full text (pdf)
    fulltext
  • 23. Andersson-Nordström, Agneta
    Flagellates in the marine microbial food web: the ecology of a mixotrophic nanoflagellate, Ochromonas sp.1989Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Nanoflagellates were found to be abundant in a coastal area of the northern Bothnian Sea. The maximum concentration of nanoflagellates, approximately 8000 cells ml-1, was observed in July, coinciding with a decrease in the abundance of cyanobacteria. Pigmented and non-pigmented nanoflagellates were approximately equally distributed throughout the year. Most of the identified genera are known as being phagotrophic, independent if autotrophic or not.

    A non-cyst-forming pigmented flagellate, Ochromonas sp., was isolated and nutritionally characterized. This chrysophycean flagellate was shown to be a mainly heterotrophic organism: Photosynthesis was too poor to support multiplication of the cells, whereas when feeding on bacteria, high growth rates were obtained. The biological function of the photosynthetic apparatus is suggested to be a survival mechanism during poor bacterial conditions.

    The flagellate grazed bacteria selectively, preferring cyanobacteria and large cells of heterotrophic bacteria, presumably depending on size-selective grazing. Despite higher growth rates of the bacteria in the sea during summer (July) than spring (May), heterotrophic bacteria in the sea was observed to be smaller in the summer. Nanoflagellates showed a maximum in July, and by selective grazing of large bacteria they might have caused the decrease in the average size of the bacteria and the decrease in the abundance of cyanobacteria.

    During the consumption of bacteria the flagellate was shown to remineralize nutrients at high rates and excrete dissolved free amino acids. Assuming the existence of a protozoan predator-prey chain of several trophic levels, it seems likely that a significant part of the nutrients fixed by primary producers is remineralized in the euphotic zone. Furthermore, data from this work indicate that flagellate activity may be a significant source of dissolved free amino acids, utilizable for the heterotrophic bacteria.

    Download full text (pdf)
    fulltext
  • 24.
    Ask, Jenny
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Rowe, Owen
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Brugel, Sonia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Strömgren, Mårten
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Byström, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Importance of coastal primary production in the northern Baltic Sea2016In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 45, no 6, p. 635-648Article in journal (Refereed)
    Abstract [en]

    In this study, we measured depth-dependent benthic microalgal primary production in a Bothnian Bay estuary to estimate the benthic contribution to total primary production. In addition, we compiled data on benthic microalgal primary production in the entire Baltic Sea. In the estuary, the benthic habitat contributed 17 % to the total annual primary production, and when upscaling our data to the entire Bothnian Bay, the corresponding value was 31 %. This estimated benthic share (31 %) is three times higher compared to past estimates of 10 %. The main reason for this discrepancy is the lack of data regarding benthic primary production in the northern Baltic Sea, but also that past studies overestimated the importance of pelagic primary production by not correcting for system-specific bathymetric variation. Our study thus highlights the importance of benthic communities for the northern Baltic Sea ecosystem in general and for future management strategies and ecosystem studies in particular.

  • 25.
    Bandara, Tharindu
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka.
    Brugel, Sonia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Lau, Danny Chun Pong
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Retention of essential fatty acids in fish differs by species, habitat use and nutritional quality of prey2023In: Ecology and Evolution, E-ISSN 2045-7758, Vol. 13, no 6, article id e10158Article in journal (Refereed)
    Abstract [en]

    Abstract Algae-produced long-chain polyunsaturated fatty acids (LC-PUFA; with ≥20 carbon atoms) are key biomolecules for consumer production and animal health. They are transferred to higher trophic levels and accumulated in food chains. However, LC-PUFA accumulation in consumers and their trophic transfer vary with the diet quality and the physiological demand for LC-PUFA of consumers. The goal of this study was to investigate spatial and taxonomic differences in LC-PUFA retention of coastal fish predators that potentially differ in their habitat use (benthic versus pelagic) and prey quality. We analyzed the fatty acid (FA) composition of common fish species, namely roach and European perch, as well as their potential prey from benthic and pelagic habitats in three bays of the northern Baltic Sea. We then assessed whether the fish LC-PUFA retention differed between species and among the study bays with different diet quality, that is, LC-PUFA availability. Our data indicated taxon-specific differences in the retention of LC-PUFA and their precursor FA in fish (i.e., short-chain PUFA with <20 carbon atoms). Perch did not show any spatial variation in the retention of all these FA, while roach showed spatial differences in the retention of docosahexaenoic acid (DHA) and their precursor FA, but not eicosapentaenoic acid (EPA). Data suggest that diet quality and trophic reliance on benthic prey underlay the DHA retention differences in roach. Although the PUFA supply might differ among sites, the low spatial variation in LC-PUFA content of perch and roach indicates that both fishes were able to selectively retain dietary LC-PUFA. Climate change together with other existing human-caused environmental stressors are expected to alter the algal assemblages and lower their LC-PUFA supply for aquatic food webs. Our findings imply that these stressors will pose heterogeneous impacts on different fish predators. We advocate further investigations on how environmental changes would affect the nutritional quality of the basal trophic level, and their subsequent impacts on LC-PUFA retention, trophic ecology, and performance of individual fish species.

    Download full text (pdf)
    fulltext
  • 26.
    Bartels, Pia
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ask, Jenny
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Science, Umeå University, Abisko, Sweden.
    Giesler, Reiner
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Science, Umeå University, Abisko, Sweden.
    Allochthonous Organic Matter Supports Benthic but Not Pelagic Food Webs in Shallow Coastal Ecosystems2018In: Ecosystems (New York. Print), ISSN 1432-9840, E-ISSN 1435-0629, Vol. 21, no 7, p. 1459-1470Article in journal (Refereed)
    Abstract [en]

    Rivers transport large amounts of allochthonous organic matter (OM) to the ocean every year, but there are still fundamental gaps in how allochthonous OM is processed in the marine environment. Here, we estimated the relative contribution of allochthonous OM (allochthony) to the biomass of benthic and pelagic consumers in a shallow coastal ecosystem in the northern Baltic Sea. We used deuterium as a tracer of allochthony and assessed both temporal variation (monthly from May to August) and spatial variation (within and outside river plume). We found variability in allochthony in space and time and across species, with overall higher values for zoobenthos (26.2 +/- 20.9%) than for zooplankton (0.8 +/- 0.3%). Zooplankton allochthony was highest in May and very low during the other months, likely as a result of high inputs of allochthonous OM during the spring flood that fueled the pelagic food chain for a short period. In contrast, zoobenthos allochthony was only lower in June and remained high during the other months. Allochthony of zoobenthos was generally higher close to the river mouth than outside of the river plume, whereas it did not vary spatially for zooplankton. Last, zoobenthos allochthony was higher in deeper than in shallower areas, indicating that allochthonous OM might be more important when autochthonous resources are limited. Our results suggest that climate change predictions of increasing inputs of allochthonous OM to coastal ecosystems may affect basal energy sources supporting coastal food webs.

    Download full text (pdf)
    fulltext
  • 27.
    Berglund, Johnny
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Jürgens, Klaus
    Bruchmüller, Iris
    Wedin, Mats
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Use of group-specific PCR primers for identification of chrysophytes by denaturing gradient gel electrophoresis2005In: Aquatic Microbial Ecology, ISSN 0948-3055, E-ISSN 1616-1564, ISSN 0948-3055, Vol. 39, no 2, p. 171-182Article in journal (Refereed)
    Abstract [en]

    The chrysophytes Chrysophyceae and Synurophyceae are ecologically important groups of autotrophic, mixotrophic and heterotrophic flagellates. The smallest forms are difficult to identify by classical microscopy but have important functions both as primary producers and as consumers of bacteria in the aquatic food chain. Group-specific primers for amplification of the 18S small sub-unit rRNA gene were developed for analysis of chrysophyte diversity by denaturing gradient gel electrophoresis (DGGE). Two different primer pairs were tested. The first primer pair (EukC1-F–Chryso-R) primarily targeted Paraphysomonadaceae and Ochromonadales, which generally have heterotrophic or mixotrophic nutrition. The second primer pair (EukC2-F–Chryso-R) targeted both Chrysophyceae and Synurophyceae. The primer pairs were tested for PCR amplification of the 18S rRNA gene of 25 cultured chrysophyte species and 6 other closely related nanoplanktonic species. Both primer pairs performed well, since PCR products were obtained for the corresponding chrysophyte cultures. None of the non-chrysophyte species were amplified with these primers. PCR products of chrysophyte cultures could be separated by DGGE in a denaturing gradient from 40 to 60%. In order to test this PCR-DGGE system for natural planktonic systems, we used field samples from a brackish water area (Baltic Sea) and a freshwater lake. The most intense DGGE bands were excised, sequenced and compared to sequences in GenBank. All obtained sequences grouped within the chrysophytes. Thus, the method seems to be promising for examining chrysophyte diversity in planktonic systems.

  • 28.
    Berglund, Johnny
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Müren, Umut
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Båmstedt, Ulf
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Efficiency of a phytoplankton-based and a bacterial-based food web in a pelagic marine system2007In: Limnology and Oceanography, Vol. 52, no 1, p. 121-131Article in journal (Refereed)
    Abstract [en]

    he food web efficiency in two contrasting food webs, one phytoplankton based and one bacteria based, was studied in a mesocosm experiment using seawater from the northern Baltic Sea. Organisms included in the experiment were bacteria, phytoplankton, protozoa, and mesozooplankton (copepods). A phytoplankton-based food web was generated by incubating at a high light level with the addition of nitrogen and phosphorus (NP). A bacteria-based food web was created by adding carbon, nitrogen, and phosphorus (CNP) and incubating at a lower light level. In the CNP treatment bacteria dominated the productivity (91%), while in the NP treatment phytoplankton were dominant producers (74%). The phytoplankton community in the NP treatment was dominated by autotrophic nanoflagellates. The food web efficiency, defined as mesozooplankton productivity per basal productivity (phytoplankton + bacteria), was 22% in the phytoplankton-based food web and 2% in the bacteria-based food web. This discrepancy could be explained by 1�xtra trophic levels in the bacteria-based food web where carbon passed through flagellates and ciliates before reaching mesozooplankton, while in the phytoplankton-based food web there was a direct pathway from phytoplankton to mesozooplankton. The results were supported by stable isotope analysis of mesozooplankton. We propose that climate change, with increased precipitation and river runoff in the Baltic Sea, might favor a bacteria-based food web and thereby reduce pelagic productivity at higher trophic levels.

  • 29.
    Berglund, Johnny
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Samuelsson, Kristina
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Kull, Tomas
    Muren, Umut
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Relative strength of resource and predation limitation of heterotrophic nanoflagellates in a low-productive sea area2005In: Journal of Plankton Research, ISSN 0142-7873, E-ISSN 1464-3774, Vol. 27, no 9, p. 923-935Article in journal (Refereed)
    Abstract [en]

    The magnitude of resource and predation limitation of heterotrophic nanoflagellates (HNF) was studied in two short-term enclosure experiments performed in a low-productive sea area in the northern Baltic Sea in 2001. A cross-factorial design was used to simultaneously assess the relative importance of the two factors. Resource limitation was removed by adding bacteria, and predation limitation was eliminated by selective filtration. The first experiment was performed in June just after the spring bloom decline and the second in September at the end of the productive season. Resource limitation prevailed during both experiments, contributing to 60% of the net growth increase in June and 74% in September. Removal of predators had a significant effect only in June. Evidence for simultaneous resource and predation limitation was thus found only during the post-bloom situation. The results were applied to a model on resource and predation control of HNF abundances. To evaluate seasonal differences, field data on HNF and bacteria from a whole year study were applied to the model. Except for a few occasions during spring, the model indicated prevailing resource control of HNF at two locations with slightly different productivity.

  • 30.
    Berglund, Åsa M. M.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Gallampois, Christine
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Ripszam, Matyas
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy.
    Larsson, Henrik
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Figueroa, Daniela
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Griniene, Evelina
    Marine Research Institute, Klaipėda University, Klaipėda, Lithuania.
    Byström, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Gorokhova, Elena
    Department of Environmental Science, Stockholm University, Stockholm, Sweden.
    Haglund, Peter
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Tysklind, Mats
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Effects on the food-web structure and bioaccumulation patterns of organic contaminants in a climate-altered Bothnian Sea mesocosms2023In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 10, article id 1244434Article in journal (Refereed)
    Abstract [en]

    Climate change is expected to alter global temperature and precipitation patterns resulting in complex environmental impacts. The proposed higher precipitation in northern Scandinavia would increase runoff from land, hence increase the inflow of terrestrial dissolved organic matter (tDOM) in coastal regions. This could promote heterotrophic bacterial production and shift the food web structure, by favoring the microbial food web. The altered climate is also expected to affect transport and availability of organic micropollutants (MPs), with downstream effects on exposure and accumulation in biota. This study aimed to assess climate-induced changes in a Bothnian Sea food web structure as well as bioaccumulation patterns of MPs. We performed a mesocosms-study, focusing on aquatic food webs with fish as top predator. Alongside increased temperature, mesocosm treatments included tDOM and MP addition. The tDOM addition affected nutrient availability and boosted both phytoplankton and heterotrophic bacteria in our fairly shallow mesocosms. The increased tDOM further benefitted flagellates, ciliates and mesozooplankton, while the temperature increase and MP addition had minor effect on those organism groups. Temperature, on the other hand, had a negative impact on fish growth and survival, whereas tDOM and MP addition only had minor impact on fish. Moreover, there were indications that bioaccumulation of MPs in fish either increased with tDOM addition or decreased at higher temperatures. If there was an impact on bioaccumulation, moderately lipophilic MPs (log Kow 3.6 - 4.6) were generally affected by tDOM addition and more lipophilic MPs (log Kow 3.8 to 6.4) were generally affected by increased temperature. This study suggest that both increased temperatures and addition of tDOM likely will affect bioaccumulation patterns of MPs in shallow coastal regions, albeit with counteracting effects.

    Download full text (pdf)
    fulltext
  • 31. Bertos-Fortis, Mireia
    et al.
    Farnelid, Hanna M.
    Lindh, Markus V.
    Casini, Michele
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Pinhassi, Jarone
    Legrand, Catherine
    Unscrambling Cyanobacteria Community Dynamics Related to Environmental Factors2016In: Frontiers in Microbiology, E-ISSN 1664-302X, Vol. 7, article id 625Article in journal (Refereed)
    Abstract [en]

    Future climate scenarios in the Baltic Sea project an increase of cyanobacterial bloom frequency and duration, attributed to eutrophication and climate change. Some cyanobacteria can be toxic and their impact on ecosystem services is relevant for a sustainable sea. Yet, there is limited understanding of the mechanisms regulating cyanobacterial diversity and biogeography. Here we unravel successional patterns and changes in cyanobacterial community structure using a 2-year monthly time series during the productive season in a 100 km coastal-offshore transect using microscopy and high-throughput sequencing of 16S rRNA gene fragments. A total of 565 cyanobacterial OTUs were found, of which 231 where filamentous/colonial and 334 picocyanobacterial. Spatial differences in community structure between coastal and offshore waters were minor. An "epidemic population structure" (dominance of a single cluster) was found for Aphanizomenon/Dolichospermum within the filamentous/colonial cyanobacterial community. In summer, this cluster simultaneously occurred with opportunistic clusters/OTUs, e.g., Nodulana spumigena and Pseudanabaena. Picocyanobacteria, Synechococcus/Cyanobium, formed a consistent but highly diverse group. Overall, the potential drivers structuring summer cyanobacterial communities were temperature and salinity. However, the different responses to environmental factors among and within genera suggest high niche specificity for individual OTUs. The recruitment and occurrence of potentially toxic filamentous/colonial clusters was likely related to disturbance such as mixing events and short-term shifts in salinity, and not solely dependent on increasing temperature and nitrogen-limiting conditions. Nutrients did not explain further the changes in cyanobacterial community composition. Novel occurrence patterns were identified as a strong seasonal succession revealing a tight coupling between the emergence of opportunistic picocyanobacteria and the bloom of filamentous/colonial clusters. These findings highlight that if environmental conditions can partially explain the presence of opportunistic picocyanobacteria, microbial and trophic interactions with filamentous/colonial cyanobacteria should also be considered as potential shaping factors for single-celled communities. Regional climate change scenarios in the Baltic Sea predict environmental shifts leading to higher temperature and lower salinity; conditions identified here as favorable for opportunistic filamentous/colonial cyanobacteria. Altogether, the diversity and complexity of cyanobacterial communities reported here is far greater than previously known, emphasizing the importance of microbial interactions between filamentous and picocyanobacteria in the context of environmental disturbances.

    Download full text (pdf)
    fulltext
  • 32.
    Bidleman, Terry
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Agosta, Kathleen
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Brorström-Lundén, Eva
    Haglund, Peter
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hansson, Katarina
    Laudon, Hjalmar
    Newton, Seth
    Nygren, Olle
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Ripszam, Matyas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Tysklind, Mats
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wiberg, Karin
    Atmospheric pathways of chlorinated pesticides and natural bromoanisoles in the northern Baltic Sea and its catchment2015In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. Suppl 3, no 44, p. 472-483Article in journal (Refereed)
    Abstract [en]

    Long-range atmospheric transport is a major pathway for delivering persistent organic pollutants to the oceans. Atmospheric deposition and volatilization of chlorinated pesticides and algae-produced bromoanisoles (BAs) were estimated for Bothnian Bay, northern Baltic Sea, based on air and water concentrations measured in 2011-2012. Pesticide fluxes were estimated using monthly air and water temperatures and assuming 4 months ice cover when no exchange occurs. Fluxes were predicted to increase by about 50 % under a 2069-2099 prediction scenario of higher temperatures and no ice. Total atmospheric loadings to Bothnian Bay and its catchment were derived from air-sea gas exchange and "bulk'' (precipitation ? dry particle) deposition, resulting in net gains of 53 and 46 kg year(-1) for endosulfans and hexachlorocyclohexanes, respectively, and net loss of 10 kg year(-1) for chlordanes. Volatilization of BAs releases bromine to the atmosphere and may limit their residence time in Bothnian Bay. This initial study provides baseline information for future investigations of climate change on biogeochemical cycles in the northern Baltic Sea and its catchment.

    Download full text (pdf)
    fulltext
  • 33.
    Bidleman, Terry
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Agosta, Kathleen
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Brugel, Sonia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Ericson, Lars
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Hansson, Katarina
    Swedish Environmental Research Institute (IVL), Gothenburg, Sweden.
    Nygren, Olle
    Umeå University, Faculty of Medicine.
    Tysklind, Mats
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sources and pathways of halomethoxybenzenes in northern Baltic estuaries2023In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 10, article id 1161065Article in journal (Refereed)
    Abstract [en]

    Introduction: Thousands of halogenated natural products (HNPs) are generated in the ocean and on land. A subset of these, halomethoxybenzenes (HMBs), are released from both natural and anthropogenic sources. Here we consider: 1. Brominated anisoles (BAs), transformation products of bromophenols. 2. Drosophilin A methyl ether (DAME: 1,2,4,5-tetrachloro-3,6-dimethoxybenzene), a secondary metabolite of terrestrial fungi. 3. Tetrachloroveratrole (TeCV: 1,2,3,4-tetrachloro-5,6-dimethoxybenzene), a lignin byproduct found in bleached kraft mill effluent. 4. Pentachloroanisole (PeCA), a metabolite of the wood preservative pentachlorophenol.

    Methods: We examined several ecosystem compartments to determine sources and exchange processes for these HMBs: air, precipitation, rivers, forest fungi and litter, and water from northern Baltic estuaries and offshore. Samples were analyzed for HMBs by capillary gas chromatography – quadrupole mass spectrometry.

    Results and discussion: All four types of HMBs were found in air, and BAs, DAME and TeCV were also present in precipitation. BAs and DAME were common in rivers and estuaries, whereas TeCV was low and PeCA was below detection. DAME was identified in several species of fungi and in forest litter; TeCV was occasionally present, but BAs and PeCA were below detection. Concentrations of BAs were higher in estuaries than in rivers or offshore waters, showing that estuaries are hot spots for production. BAs were negatively or not correlated with chlorophyll-a, suggesting contribution by heterotrophic bacteria as well as known production by phytoplankton and macroalgae. DAME was negatively or not correlated with BAs and did not appear to be produced in the estuaries; fungi and forest litter containing fungal mycelia are suggested as sources. HMBs volatilize from sea and land, disperse through the atmosphere, and return via precipitation and rivers. Production and biogeochemical cycles are influenced by climate change and we suggest BAs and DAME for following partitioning and exchange processes.

    Download full text (pdf)
    fulltext
  • 34.
    Bidleman, Terry
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Brorström-Lundén, Eva
    IVL, Swedish Environmental Research Institute (IVL), Gothenburg, Sweden.
    Brugel, Sonia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Ericson, Lars
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Hansson, Katarina
    IVL, Swedish Environmental Research Institute (IVL), Gothenburg, Sweden.
    Tysklind, Mats
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Halomethoxybenzenes in air of the Nordic region2023In: Environmental Science and Ecotechnology, ISSN 2666-4984, Vol. 13, article id 100209Article in journal (Refereed)
    Abstract [en]

    Halomethoxybenzenes (HMBs) are a group of compounds with natural and anthropogenic origins. Here we extend a 2002–2015 survey of bromoanisoles (BAs) in the air and precipitation at Råö on the Swedish west coast and Pallas in Subarctic Finland. New BAs data are reported for 2018 and 2019 and chlorinated HMBs are included for these and some previous years: drosophilin A methyl ether (DAME: 1,2,4,5-tetrachloro-3,6-dimethoxybenzene), tetrachloroveratrole (TeCV: 1,2,3,4-tetrachloro-5,6-dimethoxybenzene), and pentachloroanisole (PeCA). The order of abundance of HMBs at Råö was ΣBAs > DAME > TeCV > PeCA, whereas at Pallas the order of abundance was DAME > ΣBAs > TeCA > PeCA. The lower abundance of BAs at Pallas reflects its inland location, away from direct marine influence. Clausius-Clapeyron (CC) plots of log partial pressure (Pair)/Pa versus 1/T suggested distant transport at both sites for PeCA and local exchange for DAME and TeCV. BAs were dominated by distant transport at Pallas and by both local and distant sources at Råö. Relationships between air and precipitation concentrations were examined by scavenging ratios, SR = (ng m−3)precip/(ng m−3)air. SRs were higher at Pallas than Råö due to greater Henry's law partitioning of gaseous compounds into precipitation at colder temperatures. DAME is produced by terrestrial fungi. We screened 19 fungal species from Swedish forests and found seven of them contained 0.01–3.8 mg DAME per kg fresh weight. We suggest that the volatilization of DAME from fungi and forest litter containing fungal mycelia may contribute to atmospheric levels at both sites.

    Download full text (pdf)
    fulltext
  • 35.
    Bidleman, Terry
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Jantunen, Liisa M.
    Kucklick, John R.
    Kylin, Henrik
    Letcher, Robert J.
    Tysklind, Mats
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wong, Fiona
    A review of halogenated natural products in Arctic, Subarctic and Nordic ecosystems2019In: Emerging Contaminants, ISSN 2405-6650, E-ISSN 2405-6642, Vol. 5, p. 89-115Article in journal (Refereed)
    Abstract [en]

    Halogenated natural products (HNPs) are organic compounds containing bromine, chlorine, iodine, and rarely fluorine. HNPs comprise many classes of compounds, ranging in complexity from halocarbons to higher molecular weight compounds, which often contain oxygen and/or nitrogen atoms in addition to halogens. Many HNPs are biosynthesized by marine bacteria, macroalgae, phytoplankton, tunicates, corals, worms, sponges and other invertebrates. This paper reviews HNPs in Arctic, Subarctic and Nordic ecosystems and is based on sections of Chapter 2.16 in the Arctic Monitoring and Assessment Program (AMAP) assessment Chemicals of Emerging Arctic Concern (AMAP, 2017) which deal with the higher molecular weight HNPs. Material is updated and expanded to include more Nordic examples. Much of the chapter is devoted to “bromophenolic” HNPs, viz bromophenols (BPs) and transformation products bromoanisoles (BAs), hydroxylated and methoxylated bromodiphenyl ethers (OH-BDEs, MeO-BDEs) and polybrominated dibenzo-p-dioxins (PBDDs), since these HNPs are most frequently reported. Others discussed are 2,2′ -dimethoxy-3,3′ ,5,5′ -tetrabromobiphenyl (2,2′ -dimethoxy-BB80), polyhalogenated 1′- methyl-1,2′-bipyrroles (PMBPs), polyhalogenated 1,1′ -dimethyl-2,2′ -bipyrroles (PDBPs), polyhalogenated N-methylpyrroles (PMPs), polyhalogenated N-methylindoles (PMIs), bromoheptyl- and bromooctyl pyrroles, (1R,2S,4R,5R,1′E)-2-bromo-1-bromomethyl-1,4-dichloro-5-(2′-chloroethenyl)-5- methylcyclohexane (mixed halogenated compound MHC-1), polybrominated hexahydroxanthene derivatives (PBHDs) and polyhalogenated carbazoles (PHCs). Aspects of HNPs covered are physicochemical properties, sources and production, transformation processes, concentrations and trends in the physical environment and biota (marine and freshwater). Toxic properties of some HNPs and a discussion of how climate change might affect HNPs production and distribution are also included. The review concludes with a summary of research needs to better understand the role of HNPs as “chemicals of emerging Arctic concern”.

    Download full text (pdf)
    fulltext
  • 36.
    Bidleman, Terry F.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Agosta, Kathleen
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Haglund, Peter
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Liljelind, Per
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hegmans, Alyse
    Jantunen, Liisa M.
    Nygren, Olle
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Poole, Justen
    Ripszam, Matyas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Tysklind, Mats
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sea-air exchange of bromoanisoles and methoxylated bromodiphenylethers in the Northern Baltic2016In: Marine Pollution Bulletin, ISSN 0025-326X, E-ISSN 1879-3363, Vol. 112, no 1-2, p. 58-64Article in journal (Refereed)
    Abstract [en]

    Halogenated natural products in biota of the Baltic Sea include bromoanisoles (BAs) and methoxylated bromodiphenyl ethers (MeO-BDEs). We identified biogenic 6-MeO-BDE47 and 2'-MeO-BDE68 in Baltic water and air for the first time using gas chromatography - high resolution mass spectrometry. Partial pressures in air were related to temperature by: log p/Pa=m/T(K)+b. We determined Henry's law constants (HLCs) of 2,4-dibromoanisole (2,4-DiBA) and 2,4,6-tribromoanisole (2,4,6-TriBA) from 5 to 30°C and revised our assessment of gas exchange in the northern Baltic. The new water/air fugacity ratios (FRs) were lower, but still indicated net volatilization in May-June for 2,4-DiBA and May - September for 2,4,6-TriBA. The net flux (negative) of BAs from Bothnian Bay (38,000km2) between May - September was revised from -1319 to -532kg. FRs of MeO-BDEs were >1, suggesting volatilization, although this is tentative due to uncertainties in their HLCs and binding to dissolved organic carbon.

  • 37.
    Bidleman, Terry F.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Agosta, Kathleen
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Haglund, Peter
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Nygren, Olle
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Ripszam, Matyas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Tysklind, Mats
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Air-water exchange of brominated anisoles in the northern baltic sea2014In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 48, no 11, p. 6124-6132Article in journal (Refereed)
    Abstract [en]

    Bromophenols produced by marine algae undergo O-methylation to form bromoanisoles (BAs), which are exchanged between water and air. BAs were determined in surface water of the northern Baltic Sea (Gulf of Bothnia, consisting of Bothnian Bay and Bothnian Sea) during 2011-2013 and on a transect of the entire Baltic in September 2013. The abundance decreased in the following order: 2,4,6-tribromoanisole (2,4,6-TBA) > 2,4-dibromoanisole (2,4-DBA) ≫ 2,6-dibromoanisole (2,6-DBA). Concentrations of 2,4-DBA and 2,4,6-TBA in September were higher in the southern than in the northern Baltic and correlated well with the higher salinity in the south. This suggests south-to-north advection and dilution with fresh riverine water enroute, and/or lower production in the north. The abundance in air over the northern Baltic also decreased in the following order: 2,4,6-TBA > 2,4-DBA. However, 2,6-DBA was estimated as a lower limit due to breakthrough from polyurethane foam traps used for sampling. Water/air fugacity ratios ranged from 3.4 to 7.6 for 2,4-DBA and from 18 to 94 for 2,4,6-TBA, indicating net volatilization. Flux estimates using the two-film model suggested that volatilization removes 980-1360 kg of total BAs from Bothnian Bay (38000 km(2)) between May and September. The release of bromine from outgassing of BAs could be up to 4-6% of bromine fluxes from previously reported volatilization of bromomethanes and bromochloromethanes.

  • 38.
    Bidleman, Terry F.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Brugel, Sonia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Ericson, Lars
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Haglund, Peter
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Kupryianchyk, Darya
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Lau, Danny C. P.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Liljelind, Per
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Lundin, Lisa
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Tysklind, Anders
    Tysklind, Mats
    Umeå