Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Kahsay, Abraha
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Rodriguez-Marquez, Eva
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    López-Pérez, Ana R.
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Hörnblad, Andreas
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    von Hofsten, Jonas
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Pax3 loss of function delays tumour progression in kRAS-induced zebrafish rhabdomyosarcoma models2022In: Scientific Reports, E-ISSN 2045-2322, Vol. 12, no 1, article id 17149Article in journal (Refereed)
    Abstract [en]

    Rhabdomyosarcoma is a soft tissue cancer that arises in skeletal muscle due to mutations in myogenic progenitors that lead to ineffective differentiation and malignant transformation. The transcription factors Pax3 and Pax7 and their downstream target genes are tightly linked with the fusion positive alveolar subtype, whereas the RAS pathway is usually involved in the embryonal, fusion negative variant. Here, we analyse the role of Pax3 in a fusion negative context, by linking alterations in gene expression in pax3a/pax3b double mutant zebrafish with tumour progression in kRAS-induced rhabdomyosarcoma tumours. Several genes in the RAS/MAPK signalling pathway were significantly down-regulated in pax3a/pax3b double mutant zebrafish. Progression of rhabdomyosarcoma tumours was also delayed in the pax3a/pax3b double mutant zebrafish indicating that Pax3 transcription factors have an unappreciated role in mediating malignancy in fusion negative rhabdomyosarcoma.

    Download full text (pdf)
    fulltext
  • 2.
    López-Pérez, Ana R.
    et al.
    Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l’Hôpital 1, B34, Liège, Belgium.
    Balwierz, Piotr J.
    Institute of Clinical Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom.
    Lenhard, Boris
    Institute of Clinical Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom.
    Muller, Ferenc
    Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
    Wardle, Fiona C.
    Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, United Kingdom.
    Manfroid, Isabelle
    Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l’Hôpital 1, B34, Liège, Belgium.
    Voz, Marianne L.
    Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l’Hôpital 1, B34, Liège, Belgium.
    Peers, Bernard
    Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l’Hôpital 1, B34, Liège, Belgium.
    Identification of downstream effectors of retinoic acid specifying the zebrafish pancreas by integrative genomics2021In: Scientific Reports, E-ISSN 2045-2322, Vol. 11, no 1, article id 22717Article in journal (Refereed)
    Abstract [en]

    Retinoic acid (RA) is a key signal for the specification of the pancreas. Still, the gene regulatory cascade triggered by RA in the endoderm remains poorly characterized. In this study, we investigated this regulatory network in zebrafish by combining RNA-seq, RAR ChIP-seq and ATAC-seq assays. By analysing the effect of RA and of the RA receptor (RAR) inverse-agonist BMS493 on the transcriptome and on the chromatin accessibility of endodermal cells, we identified a large set of genes and regulatory regions regulated by RA signalling. RAR ChIP-seq further defined the direct RAR target genes in zebrafish, including hox genes as well as several pancreatic regulators like mnx1, insm1b, hnf1ba and gata6. Comparison of zebrafish and murine RAR ChIP-seq data highlighted the conserved direct target genes and revealed that some RAR sites are under strong evolutionary constraints. Among them, a novel highly conserved RAR-induced enhancer was identified downstream of the HoxB locus and driving expression in the nervous system and in the gut in a RA-dependent manner. Finally, ATAC-seq data unveiled the role of the RAR-direct targets Hnf1ba and Gata6 in opening chromatin at many regulatory loci upon RA treatment.

    Download full text (pdf)
    fulltext
  • 3.
    López-Pérez, Ana R.
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Norlin, Stefan
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Steneberg, Pär
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Remeseiro, Silvia
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Edlund, Helena
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Hörnblad, Andreas
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Pan-AMPK activator O304 prevents gene expression changes and remobilisation of histone marks in islets of diet-induced obese mice2021In: Scientific Reports, E-ISSN 2045-2322, Vol. 11, no 1, article id 24410Article in journal (Refereed)
    Abstract [en]

    AMP-activated protein kinase (AMPK) has an important role in cellular energy homeostasis and has emerged as a promising target for treatment of Type 2 Diabetes (T2D) due to its beneficial effects on insulin sensitivity and glucose homeostasis. O304 is a pan-AMPK activator that has been shown to improve glucose homeostasis in both mouse models of diabetes and in human T2D subjects. Here, we describe the genome-wide transcriptional profile and chromatin landscape of pancreatic islets following O304 treatment of mice fed high-fat diet (HFD). O304 largely prevented genome-wide gene expression changes associated with HFD feeding in CBA mice and these changes were associated with remodelling of active and repressive chromatin marks. In particular, the increased expression of the β-cell stress marker Aldh1a3 in islets from HFD-mice is completely abrogated following O304 treatment, which is accompanied by loss of active chromatin marks in the promoter as well as distant non-coding regions upstream of the Aldh1a3 gene. Moreover, O304 treatment restored dysfunctional glucose homeostasis as well as expression of key markers associated with β-cell function in mice with already established obesity. Our findings provide preclinical evidence that O304 is a promising therapeutic compound not only for T2D remission but also for restoration of β-cell function following remission of T2D diabetes.

    Download full text (pdf)
    fulltext
  • 4.
    López-Pérez, Ana R.
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Remeseiro, Silvia
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Hörnblad, Andreas
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Diet-induced rewiring of the Wnt gene regulatory network connects aberrant splicing to fatty liver and liver cancer in DIAMOND mice2023In: Scientific Reports, E-ISSN 2045-2322, Vol. 13, no 1, article id 18666Article in journal (Refereed)
    Abstract [en]

    Several preclinical models have been recently developed for metabolic associated fatty liver disease (MAFLD) and associated hepatocellular carcinoma (HCC) but comprehensive analysis of the regulatory and transcriptional landscapes underlying disease in these models are still missing. We investigated the regulatory and transcriptional landscape in fatty livers and liver tumours from DIAMOND mice that faithfully mimic human HCC development in the context of MAFLD. RNA-sequencing and ChIP-sequencing revealed rewiring of the Wnt/β-catenin regulatory network in DIAMOND tumours, as manifested by chromatin remodelling and associated switching in the expression of the canonical TCF/LEF downstream effectors. We identified splicing as a major mechanism leading to constitutive oncogenic activation of β-catenin in a large subset of DIAMOND tumours, a mechanism that is independent on somatic mutations in the locus and that has not been previously shown. Similar splicing events were found in a fraction of human HCC and hepatoblastoma samples.

    Download full text (pdf)
    fulltext
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf