Umeå universitets logga

umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 27 av 27
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Alam, Athar
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Javed, Eram
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Kumar, Rajender
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Ådén, Jörgen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Dissociation between the critical role of ClpB of Francisella tularensis for the heat shock response and the DnaK interaction and its important role for efficient type VI secretion and bacterial virulence2020Ingår i: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 16, nr 4, s. 1-27, artikel-id e1008466Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Author summary Type VI secretion systems (T6SSs) are essential virulence determinants of many Gram-negative pathogens, including Francisella tularensis. This highly virulent bacterium encodes an atypical T6SS lacking ClpV, the ATPase crucial for prototypic T6SS sheath disassembly. It, however, possesses ClpB, a protein critical for heat shock survival via its interaction with DnaK. Since ClpB possesses ATPase activity, it has been hypothesized to provide a compensatory function for the absence of ClpV, a hypothesis supported by the recent findings from us and others. Here, we investigated how F. tularensis ClpB controls T6S. In silico modelling of the ClpB-DnaK complex identified key interactions that were experimentally verified. For example, mutating one of the DnaK-interacting residues rendered the bacterium exquisitely susceptible to heat shock, but had no effect on T6S and virulence. In contrast, removing the N-terminal of ClpB only had a slight effect on the heat shock response, but strongly compromised both T6S and virulence. Intriguingly, the Escherichia coli ClpB could fully complement the function of F. tularensis ClpB. The data demonstrate that the two critical roles of ClpB, mediating heat shock survival and effective T6S, are dissociated and that the N-terminal is crucial for T6S and virulence. Francisella tularensis, a highly infectious, intracellular bacterium possesses an atypical type VI secretion system (T6SS), which is essential for its virulence. The chaperone ClpB, a member of the Hsp100/Clp family, is involved in Francisella T6SS disassembly and type VI secretion (T6S) is impaired in its absence. We asked if the role of ClpB for T6S was related to its prototypical role for the disaggregation activity. The latter is dependent on its interaction with the DnaK/Hsp70 chaperone system. Key residues of the ClpB-DnaK interaction were identified by molecular dynamic simulation and verified by targeted mutagenesis. Using such targeted mutants, it was found that the F. novicida ClpB-DnaK interaction was dispensable for T6S, intracellular replication, and virulence in a mouse model, although essential for handling of heat shock. Moreover, by mutagenesis of key amino acids of the Walker A, Walker B, and Arginine finger motifs of each of the two Nucleotide-Binding Domains, their critical roles for heat shock, T6S, intracellular replication, and virulence were identified. In contrast, the N-terminus was dispensable for heat shock, but required for T6S, intracellular replication, and virulence. Complementation of the Delta clpB mutant with a chimeric F. novicida ClpB expressing the N-terminal of Escherichia coli, led to reconstitution of the wild-type phenotype. Collectively, the data demonstrate that the ClpB-DnaK interaction does not contribute to T6S, whereas the N-terminal and NBD domains displayed critical roles for T6S and virulence.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Alam, Athar
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Javed, Eram
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    ClpB mutants of Francisella tularensis subspecies holarctica and tularensis are defective for type VI secretion and intracellular replication2018Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 8, artikel-id 11324Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Francisella tularensis, a highly infectious, intracellular bacterium possesses an atypical type VI secretion system (T6SS), which is essential for the virulence of the bacterium. Recent data suggest that the HSP100 family member, ClpB, is involved in T6SS disassembly in the subspecies Francisella novicida. Here, we investigated the role of ClpB for the function of the T6SS and for phenotypic characteristics of the human pathogenic subspecies holarctica and tularensis. The Delta clpB mutants of the human live vaccine strain, LVS, belonging to subspecies holarctica, and the highly virulent SCHU S4 strain, belonging to subspecies tularensis, both showed extreme susceptibility to heat shock and low pH, severely impaired type VI secretion (T6S), and significant, but impaired intracellular replication compared to the wild-type strains. Moreover, they showed essentially intact phagosomal escape. Infection of mice demonstrated that both Delta clpB mutants were highly attenuated, but the SCHU S4 mutant showed more effective replication than the LVS strain. Collectively, our data demonstrate that ClpB performs multiple functions in the F. tularensis subspecies holarctica and tularensis and its function is important for T6S, intracellular replication, and virulence.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Bönquist, Linda
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Lindgren, Helena
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Guina, Tina
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    MglA and Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages2008Ingår i: Infection and Immunity, ISSN 0019-9567, E-ISSN 1098-5522, Vol. 76, nr 8, s. 3502-3510Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Francisella tularensis live vaccine strain (LVS), in contrast to its iglC mutant, replicates in the cytoplasm of macrophages. We studied the outcome of infection of the murine macrophagelike cell line J774A.1 with LVS and with iglC, iglD, and mglA mutants, the latter of which is deficient in a global regulator. Compared to LVS, all of the mutants showed impaired intracellular replication up to 72 h, and the number of the mglA mutant bacteria even decreased. Colocalization with LAMP-1 was significantly increased for all mutants compared to LVS, indicating an impaired ability to escape into the cytoplasm. A lysosomal acidity-dependent dye accumulated in approximately 40% of the vacuoles containing mutant bacteria but not at all in vacuoles containing LVS. Preactivation of the macrophages with gamma interferon inhibited the intracellular growth of all strains and significantly increased acidification of phagosomes containing the mutants, but it only slightly increased the LAMP-1 colocalization. The intracellular replication and phagosomal escape of the iglC and iglD mutants were restored by complementation in trans. In conclusion, the IglC, IglD, and MglA proteins each directly or indirectly critically contribute to the virulence of F. tularensis LVS, including its intracellular replication, cytoplasmic escape, and inhibition of acidification of the phagosomes.

  • 4.
    Chin, Chui-Yoke
    et al.
    Emory Antibiotic Resistance Center, Emory University School of Medicine, GA, Atlanta, United States; Emory Vaccine Center, Emory University School of Medicine, GA, Atlanta, United States; Yerkes National Primate Research Center, Emory University School of Medicine, GA, Atlanta, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, GA, Atlanta, United States.
    Zhao, Jinshi
    Department of Biochemistry, Duke University School of Medicine, NC, Durham, United States.
    Llewellyn, Anna C.
    Emory Vaccine Center, Emory University School of Medicine, GA, Atlanta, United States; Yerkes National Primate Research Center, Emory University School of Medicine, GA, Atlanta, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, GA, Atlanta, United States.
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Zhou, Pei
    Department of Biochemistry, Duke University School of Medicine, NC, Durham, United States.
    Weiss, David S.
    Emory Antibiotic Resistance Center, Emory University School of Medicine, GA, Atlanta, United States; Emory Vaccine Center, Emory University School of Medicine, GA, Atlanta, United States; Yerkes National Primate Research Center, Emory University School of Medicine, GA, Atlanta, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, GA, Atlanta, United States; Research Service, Atlanta VA Medical Center, GA, Decatur, United States.
    Francisella FlmX broadly affects lipopolysaccharide modification and virulence2021Ingår i: Cell Reports, E-ISSN 2211-1247, Vol. 35, nr 11, artikel-id 109247Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The outer membrane protects Gram-negative bacteria from the host environment. Lipopolysaccharide (LPS), a major outer membrane constituent, has distinct components (lipid A, core, O-antigen) generated by specialized pathways. In this study, we describe the surprising convergence of these pathways through FlmX, an uncharacterized protein in the intracellular pathogen Francisella. FlmX is in the flippase family, which includes proteins that traffic lipid-linked envelope components across membranes. flmX deficiency causes defects in lipid A modification, core remodeling, and O-antigen addition. We find that an F. tularensis mutant lacking flmX is >1,000,000-fold attenuated. Furthermore, FlmX is required to resist the innate antimicrobial LL-37 and the antibiotic polymyxin. Given FlmX's central role in LPS modification and its conservation in intracellular pathogens Brucella, Coxiella, and Legionella, FlmX may represent a novel drug target whose inhibition could cripple bacterial virulence and sensitize bacteria to innate antimicrobials and antibiotics.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Conlan, J Wayne
    et al.
    NRC, Kanada.
    Shen, Hua
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Zingmark, Carl
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Oyston, Petra CF
    Chen, Wangxue
    House, Robert V
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Differential ability of novel attenuated targeted deletion mutants of Francisella tularensis subspecies tularensis strain SCHU S4 to protect mice against aerosol challenge with virulent bacteria: effects of host background and route of immunization2010Ingår i: Vaccine, ISSN 0264-410X, E-ISSN 1873-2518, Vol. 28, nr 7, s. 1824-1831Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Francisella tularensis subspecies tularensis is a highly virulent facultative intracellular pathogen of humans and a potential biological weapon. A live vaccine strain, F. tularensis LVS, was developed more than 50 years ago by pragmatic attenuation of a strain of the less virulent holarctica subspecies. LVS was demonstrated to be highly effective in human volunteers who were exposed to intradermal challenge with fully virulent subsp. tularensis, but was less effective against aerosol exposure. LVS faces regulatory hurdles that to date have prevented its licensure for general use. Therefore, a better defined and more effective vaccine is being sought. To this end we have created gene deletion mutants in the virulent subsp. tularensis strain and tested them for their ability to elicit a protective immune response against systemic or aerosol challenge with the highly virulent wild-type subsp. tularensis strain, SCHU S4. Both oral and intradermal (ID) primary vaccination routes were assessed in BALB/c and C3H/HeN mice as was oral boosting. One SCHU S4 mutant missing the heat shock gene, clpB, was significantly more attenuated than LVS whereas a double deletion mutant missing genes FTT0918 and capB was as attenuated as LVS. In general mice immunized with SCHU S4DeltaclpB were significantly better protected against aerosol challenge than mice immunized with LVS. A single ID immunization of BALB/c mice with SCHU S4DeltaclpB was at least as effective as any other regimen examined. Mice immunized with SCHU S4Delta0918DeltacapB were generally protected to a similar degree as mice immunized with LVS. A preliminary examination of immune responses to vaccination with LVS, SCHU S4DeltaclpB, or SCHU S4Delta0918DeltacapB provided no obvious correlate to their relative efficacies.

  • 6.
    Eneslätt, Kjell
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Rydén, Patrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Vaccine-mediated mechanisms controlling replication of Francisella tularensis in human peripheral blood mononuclear cells using a co-culture system2018Ingår i: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 8, artikel-id 27Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cell-mediated immunity (CMI) is normally required for efficient protection against intracellular infections, however, identification of correlates is challenging and they are generally lacking. Francisella tularensis is a highly virulent, facultative intracellular bacterium and CMI is critically required for protection against the pathogen, but how this is effectuated in humans is poorly understood. To understand the protective mechanisms, we established an in vitro co-culture assay to identify how control of infection of F. tularensis is accomplished by human cells and hypothesized that the model will mimic in vivo immune mechanisms. Non-adherent peripheral blood mononuclear cells (PBMCs) were expanded with antigen and added to cultures with adherent PBMC infected with the human vaccine strain, LVS, or the highly virulent SCHU S4 strain. Intracellular numbers of F. tularensis was followed for 72 h and secreted and intracellular cytokines were analyzed. Addition of PBMC expanded from naïve individuals, i.e., those with no record of immunization to F. tularensis, generally resulted in little or no control of intracellular bacterial growth, whereas addition of PBMC from a majority of F. tularensis-immune individuals executed static and sometimes cidal effects on intracellular bacteria. Regardless of infecting strain, statistical differences between the two groups were significant, P < 0.05. Secretion of 11 cytokines was analyzed after 72 h of infection and significant differences with regard to secretion of IFN-γ, TNF, and MIP-1β was observed between immune and naïve individuals for LVS-infected cultures. Also, in LVS-infected cultures, CD4 T cells from vaccinees, but not CD8 T cells, showed significantly higher expression of IFN-γ, MIP-1β, TNF, and CD107a than cells from naïve individuals. The co-culture system appears to identify correlates of immunity that are relevant for the understanding of mechanisms of the protective host immunity to F. tularensis.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Forslund, Anna-Lena
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Salomonsson, Emelie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Goloviov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Kuoppa, Kerstin
    FOI, Umeå (Swedish Defence Research Agency).
    Michell, Stephen
    Titball, Richard
    Oyston, Petra
    Noppa, Laila
    FOI, Umeå (Swedish Defence Research Agency).
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Forsberg, Åke
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    The type IV pilin, PilA, is required for full virulence of Francisella tularensis subspecies tularensisManuskript (Övrig (populärvetenskap, debatt, mm))
    Abstract [en]

    Background: All four Francisella tularensis subspecies possess gene clusters with potential to express type IV pili (Tfp). These clusters include putative pilin genes, as well as pilB, pilC and pilQ, required for secretion and assembly of Tfp. A hallmark of Tfp is the ability to retract the pilus upon surface contact, a property mediated by the ATPase PilT. Interestingly, out of the two major human pathogenic subspecies only the highly virulent type A strains have a functional pilT gene.

    Results: In a previous study, we were able to show that one pilin gene, pilA, was essential for virulence of a type B strain in a mouse infection model. In this work we have examined the role of several pilin genes in the virulence of the pathogenic type A strain SCHU S4. pilA, pilC, pilQ, and pilT were mutated by in-frame deletion mutagenesis. Interestingly, when mice were infected with a mixture of each mutant strain and the wild-type strain, the pilA, pilC and pilQ mutants were out-competed, while the pilT mutant was equally competitive as the wild-type.

    Conclusions: This suggests that expression and surface localisation of PilA contribute to virulence in the highly virulent type A strain, while PilT was dispensable for virulence in the mouse infection model.

  • 8.
    Forslund, Anna-Lena
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Salomonsson, Emelie Näslund
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Kuoppa, Kerstin
    Michell, Stephen
    Titball, Richard
    Oyston, Petra
    Noppa, Laila
    FOI.
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    The type IV pilin, PilA, is required for full virulence of Francisella tularensis subspecies tularensis2010Ingår i: BMC Microbiology, E-ISSN 1471-2180, Vol. 10, s. 227-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This suggests that expression and surface localisation of PilA contribute to virulence in the highly virulent type A strain, while PilT was dispensable for virulence in the mouse infection model.

  • 9.
    Golovlev, Igor
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Twine, Susan M.
    Shen, Hua
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Conlan, Wayne
    A Delta clpB Mutant of Francisella tularensis Subspecies holarctica Strain, FSC200, Is a More Effective Live Vaccine than F. tularensis LVS in a Mouse Respiratory Challenge Model of Tularemia2013Ingår i: PLOS ONE, E-ISSN 1932-6203, Vol. 8, nr 11, s. e78671-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Francisella tularensis subsp. tularensis is a highly virulent pathogen for humans especially if inhaled. Consequently, it is considered to be a potential biothreat agent. An experimental vaccine, F. tularensis live vaccine strain, derived from the less virulent subsp. holarctica, was developed more than 50 years ago, but remains unlicensed. Previously, we developed a novel live vaccine strain, by deleting the chaperonin clpB gene from F. tularensis subsp. tularensis strain, SCHU S4. SCHU S4 Delta clpB was less virulent for mice than LVS and a more effective vaccine against respiratory challenge with wild type SCHU S4. In the current study, we were interested to determine whether a similar mutant on the less virulent subsp. holarctica background would also outperform LVS in terms of safety and efficacy. To this end, clpB was deleted from clinical holarctica strain, FSC200. FSC200 Delta clpB had a significantly higher intranasal LD50 than LVS for BALB/c mice, but replicated to higher numbers at foci of infection after dermal inoculation. Moreover, FSC200 Delta clpB killed SCID mice more rapidly than LVS. However, dermal vaccination of BALB/c mice with the former versus the latter induced greater protection against respiratory challenge with SCHU S4. This increased efficacy was associated with enhanced production of pulmonary IL-17 after SCHU S4 challenge.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Golovliov, Igor
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Bäckman, Stina
    Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden.
    Granberg, Malin
    Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden.
    Salomonsson, Emelie
    Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden.
    Lundmark, Eva
    Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden.
    Näslund, Jonas
    Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden.
    Busch, Joseph D.
    Pathogen and Microbiome Institute, Northern Arizona University, Arizona, Flagstaff, United States.
    Birdsell, Dawn
    Pathogen and Microbiome Institute, Northern Arizona University, Arizona, Flagstaff, United States.
    Sahl, Jason W.
    Pathogen and Microbiome Institute, Northern Arizona University, Arizona, Flagstaff, United States.
    Wagner, David M.
    Pathogen and Microbiome Institute, Northern Arizona University, Arizona, Flagstaff, United States.
    Johansson, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Forsman, Mats
    Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden.
    Thelaus, Johanna
    Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden.
    Long-Term Survival of Virulent Tularemia Pathogens outside a Host in Conditions That Mimic Natural Aquatic Environments2021Ingår i: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 87, nr 6, s. 1-11, artikel-id e02713-20Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Francisella tularensis, the causative agent of the zoonotic disease tularemia, can cause seasonal outbreaks of acute febrile illness in humans with disease peaks in late summer to autumn. Interestingly, its mechanisms for environmental persistence between outbreaks are poorly understood. One hypothesis is that F. tularensis forms biofilms in aquatic environments. We utilized two fully virulent wild-type strains: FSC200 (Francisella tularensis subsp. holarctica) and Schu S4 (Francisella tularensis subsp. tularensis) and three control strains, the attenuated live vaccine strain (LVS; F. tularensis subsp. holarctica), a Schu S4 DwbtI mutant that is documented to form biofilms, and the low-virulence strain U112 of the closely related species Francisella novicida. Strains were incubated in saline solution (0.9% NaCl) microcosms for 24 weeks at both 4°C and 20°C, whereupon viability and biofilm formation were measured. These temperatures were selected to approximate winter and summer temperatures of fresh water in Scandinavia, respectively. U112 and Schu S4 DwbtI formed biofilms, but F. tularensis strains FSC200 and Schu S4 and the LVS did not. All strains exhibited prolonged viability at 4°C compared to 20°C. U112 and FSC200 displayed remarkable long-term persistence at 4°C, with only 1- and 2-fold log reductions, respectively, of viable cells after 24weeks. Schu S4 exhibited lower survival, yielding no viable cells by week 20. At 24weeks, cells from FSC200, but not from Schu S4, were still fully virulent in mice. Taken together, these results demonstrate biofilm-independent, long-term survival of pathogenic F. tularensis subsp. holarctica in conditions that mimic overwinter survival in aquatic environments.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Golovliov, Igor
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Lindgren, Helena
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Eneslätt, Kjell
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Conlan, Wayne
    Mosnier, Amandine
    Henry, Thomas
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    An In Vitro Co-culture Mouse Model Demonstrates Efficient Vaccine-Mediated Control of Francisella tularensis SCHU S4 and Identifies Nitric Oxide as a Predictor of Efficacy2016Ingår i: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 6, artikel-id 152Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Francisella tularensis is a highly virulent intracellular bacterium and cell-mediated immunity is critical for protection, but mechanisms of protection against highly virulent variants, such as the prototypic strain F. tularensis strain SCHU S4, are poorly understood. To this end, we established a co-culture system, based on splenocytes from naive, or immunized mice and in vitro infected bone marrow-derived macrophages that allowed assessment of mechanisms controlling infection with F. tularensis. We utilized the system to understand why the clpB gene deletion mutant, Delta clpB, of SCHU S4 shows superior efficacy as a vaccine in the mouse model as compared to the existing human vaccine, the live vaccine strain (LVS). Compared to naive splenocytes, Delta clpB-, or LVS-immune splenocytes conferred very significant control of a SCHU S4 infection and the Delta clpB-immune splenocytes were superior to the LVS-immune splenocytes. Cultures with the Delta clpB-immune splenocytes also contained higher levels of IFN-gamma, IL-17, and GM-CSF and nitric oxide, and T cells expressing combinations of IFN-gamma, TNF-alpha, and IL-17, than did cultures with LVS-immune splenocytes. There was strong inverse correlation between bacterial replication and levels of nitrite, an end product of nitric oxide, and essentially no control was observed when BMDM from iNOS(-/-) mice were infected. Collectively, the co-culture model identified a critical role of nitric oxide for protection against a highly virulent strain of F. tularensis.

    Ladda ner fulltext (pdf)
    fulltext
  • 12. Hazlett, Karsten RO
    et al.
    Caldon, Seth D
    McArthur, Debbie G
    Cirillo, Kerry A
    Kirimanjeswara, Girish S
    Magguilli, Micheal L
    Malik, Meenakshi
    Shah, Aaloki
    Broderick, Scott
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Metzger, Dennis W
    Rajan, Krishna
    Sellati, Timothy J
    Loegering, Daniel J
    Adaptation of Francisella tularensis to the mammalian environment is governed by cues which can be mimicked in vitro2008Ingår i: Infection and Immunity, ISSN 0019-9567, E-ISSN 1098-5522, Vol. 76, nr 10, s. 4479-4488Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The intracellular bacterium Francisella tularensis survives in mammals, arthropods, and freshwater amoeba. It was previously established that the conventional media used for in vitro propagation of this microbe do not yield bacteria that mimic those harvested from infected mammals; whether these in vitro-cultivated bacteria resemble arthropod- or amoeba-adapted Francisella is unknown. As a foundation for our goal of identifying F. tularensis outer membrane proteins which are expressed during mammalian infection, we first sought to identify in vitro cultivation conditions that induce the bacterium's infection-derived phenotype. We compared Francisella LVS grown in brain heart infusion broth (BHI; a standard microbiological medium rarely used in Francisella research) to that grown in Mueller-Hinton broth (MHB; the most widely used F. tularensis medium, used here as a negative control) and macrophages (a natural host cell, used here as a positive control). BHI- and macrophage-grown F. tularensis cells showed similar expression of MglA-dependent and MglA-independent proteins; expression of the MglA-dependent proteins was repressed by the supraphysiological levels of free amino acids present in MHB. We observed that during macrophage infection, protein expression by intracellular bacteria differed from that by extracellular bacteria; BHI-grown bacteria mirrored the latter, while MHB-grown bacteria resembled neither. Naïve macrophages responding to BHI- and macrophage-grown bacteria produced markedly lower levels of proinflammatory mediators than those in cells exposed to MHB-grown bacteria. In contrast to MHB-grown bacteria, BHI-grown bacteria showed minimal delay during intracellular replication. Cumulatively, our findings provide compelling evidence that growth in BHI yields bacteria which recapitulate the phenotype of Francisella organisms that have emerged from macrophages.

  • 13.
    Kadzhaev, Konstantin
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Zingmark, Carl
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Bolanowski, Mark
    Shen, Hua
    Conlan, Wayne
    NRC/ Canada.
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Identification of genes contributing to the virulence of Francisella tularensis SCHU S4 in a mouse intradermal infection model2009Ingår i: PLOS ONE, E-ISSN 1932-6203, Vol. 4, nr 5, s. e5463-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    BACKGROUND: Francisella tularensis is a highly virulent human pathogen. The most virulent strains belong to subspecies tularensis and these strains cause a sometimes fatal disease. Despite an intense recent research effort, there is very limited information available that explains the unique features of subspecies tularensis strains that distinguish them from other F. tularensis strains and that explain their high virulence. Here we report the use of targeted mutagenesis to investigate the roles of various genes or pathways for the virulence of strain SCHU S4, the type strain of subspecies tularensis.

    METHODOLOGY/PRINCIPAL FINDINGS: The virulence of SCHU S4 mutants was assessed by following the outcome of infection after intradermal administration of graded doses of bacteria. By this route, the LD(50) of the SCHU S4 strain is one CFU. The virulence of 20 in-frame deletion mutants and 37 transposon mutants was assessed. A majority of the mutants did not show increased prolonged time to death, among them notably Delta pyrB and Delta recA. Of the remaining, mutations in six unique targets, tolC, rep, FTT0609, FTT1149c, ahpC, and hfq resulted in significantly prolonged time to death and mutations in nine targets, rplA, wbtI, iglB, iglD, purL, purF, ggt, kdtA, and glpX, led to marked attenuation with an LD(50) of > 10(3) CFU. In fact, the latter seven mutants showed very marked attenuation with an LD(50) of > or = 10(7) CFU.

    CONCLUSIONS/SIGNIFICANCE: The results demonstrate that the characterization of targeted mutants yielded important information about essential virulence determinants that will help to identify the so far little understood extreme virulence of F. tularensis subspecies tularensis.

  • 14.
    Lai, Xin-He
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Expression of iglC is mecessary for intracellular growth and induction of apoptosis in murine macrophages by Francisella tularensis2004Ingår i: Microbial Pathogenesis, ISSN 0882-4010, E-ISSN 1096-1208, Vol. 37, nr 5, s. 225-230Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Francisella tularensis is a facultative intracellular bacterium capable of inducing apoptosis in murine macrophages. In a previous study, an iglC null mutant of F. tularensis live vaccine strain LVS was generated by allelic replacement and in the current study this iglC mutant was successfully complemented in trans. We characterized the capacity of this iglC mutant and the complemented strain to induce macrophage apoptosis. The iglC mutant did not induce apoptosis in the infected cells. In contrast, the complemented iglC strain was able to multiply in the murine macrophage-like cell line J774A.1 and induced apoptosis similar to that of the wild-type strain. It is the first successful example of complementation in trans of a F. tularensis mutant strain and more importantly this work provides direct evidence that the intracellular growth ability is essential for F. tularensis to induce macrophage apoptosis.

  • 15.
    Lindgren, Helena
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Eneslätt, Kjell
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Gelhaus, Carl
    Rydén, Patrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Wu, Terry
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Vaccine-Mediated Mechanisms Controlling Francisella tularensis SCHU S4 Growth in a Rat Co-Culture System2020Ingår i: Pathogens, E-ISSN 2076-0817, Vol. 9, nr 5, artikel-id 338Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Francisella tularensis causes the severe disease tularemia. In the present study, the aim was to identify correlates of protection in the rat co-culture model by investigating the immune responses using two vaccine candidates conferring distinct degrees of protection in rat and mouse models. The immune responses were characterized by use of splenocytes from naive or Live vaccine strain- (LVS) or clpB/wbtC-immunized Fischer 344 rats as effectors and bone marrow-derived macrophages infected with the highly virulent strain SCHU S4. A complex immune response was elicited, resulting in cytokine secretion, nitric oxide production, and efficient control of the intracellular bacterial growth. Addition of LVS-immune splenocytes elicited a significantly better control of bacterial growth than clpB/wbtC splenocytes. This mirrored the efficacy of the vaccine candidates in the rat model. Lower levels of IFN-gamma, TNF, fractalkine, IL-2, and nitrite were present in the co-cultures with clpB/wbtC splenocytes than in those with splenocytes from LVS-immunized rats. Nitric oxide was found to be a correlate of protection, since the levels inversely correlated to the degree of protection and inhibition of nitric oxide production completely reversed the growth inhibition of SCHU S4. Overall, the results demonstrate that the co-culture assay with rat-derived cells is a suitable model to identify correlates of protection against highly virulent strains of F. tularensis

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Lindgren, Helena
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Eneslätt, Kjell
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Gelhaus, Carl
    Appili Therapeutics, NS, Halifax, Canada.
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Analyses of human immune responses to Francisella tularensis identify correlates of protection2023Ingår i: Frontiers in Immunology, E-ISSN 1664-3224, Vol. 14, artikel-id 1238391Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Francisella tularensis is the etiological agent of the potentially severe infection tularemia. An existing F: tularensis vaccine, the live vaccine strain (LVS), has been used to protect at-risk personnel, but it is not licensed in any country and it has limited efficacy. Therefore, there is a need of a new, efficacious vaccine. The aim of the study was to perform a detailed analysis of the characteristics of the human immune response to F. tularensis, since this will generate crucial knowledge required to develop new vaccine candidates. Nine individuals were administered the LVS vaccine and peripheral blood mononuclear cells (PBMC) were collected before and at four time points up to one year after vaccination. The properties of the PBMC were characterized by flow cytometry analysis of surface markers and intracellular cytokine staining. In addition, the cytokine content of supernatants from F. tularensis-infected PBMC cultures was determined and the protective properties of the supernatants investigated by adding them to cultures with infected monocyte-derived macrophages (MDM). Unlike before vaccination, PBMC collected at all four time points after vaccination demonstrated F. tularensis-specific cell proliferation, cytokine secretion and cytokine-expressing memory cells. A majority of 17 cytokines were secreted at higher levels by PBMC collected at all time points after vaccination than before vaccination. A discriminative analysis based on IFN-γ and IL-13 secretion correctly classified samples obtained before and after vaccination. Increased expression of IFN-γ, IL-2, and MIP-1β were observed at all time points after vaccination vs. before vaccination and the most significant changes occurred among the CD4 transient memory, CD8 effector memory, and CD8 transient memory T-cell populations. Growth restriction of the highly virulent F. tularensis strain SCHU S4 in MDM was conferred by supernatants and protection correlated to levels of IFN-γ, IL-2, TNF, and IL-17. The findings demonstrate that F. tularensis vaccination induces long-term T-cell reactivity, including TEM and TTM cell populations. Individual cytokine levels correlated with the degree of protection conferred by the supernatants. Identification of such memory T cells and effector mechanisms provide an improved understanding of the protective mechanisms against F. tularensis. mechanisms against F. tularensis.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Lindgren, Helena
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Honn, Marie
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Golovlev, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Kadzhaev, Konstantin
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Conlan, Wayne
    NRC Canada.
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    The 58-kilodalton major virulence factor of Francisella tularensis is required for efficient utilization of iron2009Ingår i: Infection and Immunity, ISSN 0019-9567, E-ISSN 1098-5522, Vol. 77, nr 10, s. 4429-4436Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigated the role of the 58-kDa FTT0918 protein in the iron metabolism of Francisella tularensis. The phenotypes of SCHU S4, a prototypic strain of F. tularensis subsp. tularensis, and the Delta FTT0918 and Delta fslA isogenic mutants were analyzed. The gene product missing in the Delta fslA mutant is responsible for synthesis of a siderophore. When grown in broth with various iron concentrations, the two deletion mutants generally reached lower maximal densities than SCHU S4. The Delta FTT0918 mutant, but not the Delta fslA mutant, upregulated the genes of the F. tularensis siderophore locus (fsl) operon even at high iron concentrations. A chrome azurol sulfonate plate assay confirmed siderophore production by all strains except the Delta fslA strain. In a cross-feeding experiment using medium devoid of free iron, SCHU S4 promoted growth of the Delta fslA strain but not of the Delta FTT0918 strain. The sensitivity of SCHU S4 and the Delta FTT0918 and Delta fslA strains to streptonigrin demonstrated that the Delta FTT0918 strain contained a smaller free intracellular iron pool and that the Delta fslA strain contained a larger one than SCHU S4. In contrast to the marked attenuation of the Delta FTT0918 strain, the Delta fslA strain was as virulent as SCHU S4 in a mouse model. Altogether, the data demonstrate that the FTT0918 protein is required for F. tularensis to utilize iron bound to siderophores and that it likely has a role also in siderophore-independent iron acquisition. We suggest that the FTT0918 protein be designated Fe utilization protein A, FupA.

  • 18.
    Lindgren, Helena
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Lindgren, Lena
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Mechanisms of heme utilization by Francisella tularensis2015Ingår i: PLOS ONE, E-ISSN 1932-6203, Vol. 10, nr 3, artikel-id e0119143Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Francisella tularensis is a highly virulent facultative intracellular pathogen causing the severe disease tularemia in mammals. As for other bacteria, iron is essential for its growth but very few mechanisms for iron acquisition have been identified. Here, we analyzed if and how F. tularensis can utilize heme, a major source of iron in vivo. This is by no means obvious since the bacterium lacks components of traditional heme-uptake systems. We show that SCHU S4, the prototypic strain of subspecies tularensis, grew in vitro with heme as the sole iron source. By screening a SCHU S4 transposon insertion library, 16 genes were identified as important to efficiently utilize heme, two of which were required to avoid heme toxicity. None of the identified genes appeared to encode components of a potential heme-uptake apparatus. Analysis of SCHU S4 deletion mutants revealed that each of the components FeoB, the siderophore system, and FupA, contributed to the heme-dependent growth. In the case of the former two systems, iron acquisition was impaired, whereas the absence of FupA did not affect iron uptake but led to abnormally high binding of iron to macromolecules. Overall, the present study demonstrates that heme supports growth of F. tularensis and that the requirements for the utilization are highly complex and to some extent novel.

    Ladda ner fulltext (pdf)
    fulltext
  • 19.
    Lindgren, Marie
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Bröms, Jeanette E.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Meyer, Lena
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    The Francisella tularensis LVS ΔpdpC mutant exhibits a unique phenotype during intracellular infection2013Ingår i: BMC Microbiology, E-ISSN 1471-2180, Vol. 13, artikel-id 20Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: A prerequisite for the virulence of the facultative intracellular bacterium Francisella tularensis is effective intramacrophage proliferation, which is preceded by phagosomal escape into the cytosol, and ultimately leads to host cell death. Many components essential for the intracellular life cycle are encoded by a gene cluster, the Francisella pathogenicity island (FPI), constituting a type VI secretion system.

    Results: We characterized the FPI mutant ΔpdpC of the live vaccine strain (LVS) of F. tularensis and found that it exhibited lack of intracellular replication, incomplete phagosomal escape, and marked attenuation in the mouse model, however, unlike a phagosomally contained FPI mutant, it triggered secretion of IL-1β, albeit lower than LVS, and markedly induced LDH release.

    Conclusions: The phenotype of the ΔpdpC mutant appears to be unique compared to previously described F. tularensis FPI mutants.

    Ladda ner fulltext (pdf)
    The Francisella tularensis LVS ΔpdpC mutant exhibits a unique phenotype during intracellular infection
  • 20.
    Lindgren, Marie
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Tancred, Linda
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Golovlev, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Twine, Susan
    National Research Council of Canada, Institute for Biological Sciences, Ottawa, Ontario, Canada.
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Characterization of the spontaneous mutant FSC043 of Francisella tularensis subspecies tularensisManuskript (preprint) (Övrigt vetenskapligt)
  • 21.
    Lindgren, Marie
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Tancred, Linda
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Conlan, Wayne
    Twine, Susan M.
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Identification of Mechanisms for Attenuation of the FSC043 Mutant of Francisella tularensis SCHU S42014Ingår i: Infection and Immunity, ISSN 0019-9567, E-ISSN 1098-5522, Vol. 82, nr 9, s. 3622-3635Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Previously, we identified a spontaneous, essentially avirulent mutant, FSC043, of the highly virulent strain SCHU S4 of Francisella tularensis subsp. tularensis. We have now characterized the phenotype of the mutant and the mechanisms of its attenuation in more detail. Genetic and proteomic analyses revealed that the pdpE gene and most of the pdpC gene were very markedly downregulated and, as previously demonstrated, that the strain expressed partially deleted and fused fupA and fupB genes. FSC043 showed minimal intracellular replication and induced no cell cytotoxicity. The mutant showed delayed phagosomal escape; at 18 h, colocalization with LAMP-1 was 80%, indicating phagosomal localization, whereas the corresponding percentages for SCHU S4 and the Delta fupA mutant were < 10%. However, a small subset of the FSC043-infected cells contained up to 100 bacteria with LAMP-1 colocalization of around 30%. The unusual intracellular phenotype was similar to that of the Delta pdpC and Delta pdpC Delta pdpE mutants. Complementation of FSC043 with the intact fupA and fupB genes did not affect the phenotype, whereas complementation with the pdpC and pdpE genes restored intracellular replication and led to marked virulence. Even higher virulence was observed after complementation with both double-gene constructs. After immunization with the FSC043 strain, moderate protection against respiratory challenge with the SCHU S4 strain was observed. In summary, FSC043 showed a highly unusual intracellular phenotype, and based on our findings, we hypothesize that the mutation in the pdpC gene makes an essential contribution to the phenotype.

  • 22. Meibom, Karin L
    et al.
    Dubail, Iharilalao
    Dupuis, Marion
    Barel, Monique
    Lenco, Juraj
    Stulik, Jiri
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Charbit, Alain
    The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice2008Ingår i: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 67, nr 6, s. 1384-1401Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Intracellular bacterial pathogens generally express chaperones such as Hsp100s during multiplication in host cells, allowing them to survive potentially hostile conditions. Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularaemia. The ability of F. tularensis to multiply and survive in macrophages is considered essential for its virulence. Although previous mutant screens in Francisella have identified the Hsp100 chaperone ClpB as important for intracellular survival, no detailed study has been performed. We demonstrate here that ClpB of F. tularensis live vaccine strain (LVS) is important for resistance to cellular stress. Promoter analysis shows that the transcriptional start is preceded by a sigma32-like promoter sequence and we demonstrate that expression of clpB is induced by heat shock. This indicates that expression of clpB is dependent on the heat-shock response mediated by sigma32, the only alternative sigma-factor present in Francisella. Our studies demonstrate that ClpB contributes to intracellular multiplication in vitro, but is not essential. However, ClpB is absolutely required for Francisella to replicate in target organs and induce disease in mice. Proteomic analysis of membrane-enriched fractions shows that five proteins are recovered at lower levels in the mutant strain. The crucial role of ClpB for in vivo persistence of Francisella may be linked to its assumed function in reactivation of aggregated proteins under in vivo stress conditions.

  • 23.
    Mohammadi, Nasibeh
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Lindgren, Helena
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Eneslätt, Kjell
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Yamamoto, Masahiro
    Martin, Amandine
    Henry, Thomas
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Guanylate-Binding Proteins Are Critical for Effective Control of Francisella tularensis Strains in a Mouse Co-Culture System of Adaptive Immunity2020Ingår i: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 10, artikel-id 594063Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Francisella tularensis is a Select Agent that causes the severe disease tularemia in humans and many animal species. The bacterium demonstrates rapid intracellular replication, however, macrophages can control its replication if primed and activation with IFN-γ is known to be essential, although alone not sufficient, to mediate such control. To further investigate the mechanisms that control intracellular F. tularensis replication, an in vitro co-culture system was utilized containing splenocytes obtained from naïve or immunized C57BL/6 mice as effectors and infected bone marrow-derived wild-type or chromosome-3-deficient guanylate-binding protein (GBP)-deficient macrophages. Cells were infected either with the F. tularensis live vaccine strain (LVS), the highly virulent SCHU S4 strain, or the surrogate for F. tularensis, F. novicida. Regardless of strain, significant control of the bacterial replication was observed in co-cultures with wild-type macrophages and immune splenocytes, but not in cultures with immune splenocytes and GBPchr3-deficient macrophages. Supernatants demonstrated very distinct, infectious agent-dependent patterns of 23 cytokines, whereas the cytokine patterns were only marginally affected by the presence or absence of GBPs. Levels of a majority of cytokines were inversely correlated to the degree of control of the SCHU S4 and LVS infections, but this was not the case for the F. novicida infection. Collectively, the co-culture assay based on immune mouse-derived splenocytes identified a dominant role of GBPs for the control of intracellular replication of various F. tularensis strains, regardless of their virulence, whereas the cytokine patterns markedly were dependent on the infectious agents, but less so on GBPs.

    Ladda ner fulltext (pdf)
    fulltext
  • 24.
    Salomonsson, Emelie
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Kuoppa, Kerstin
    Totalförsvarets forskningsinstitut FOI.
    Forslund, Anna-Lena
    Zingmark, Carl
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Noppa, Laila
    Totalförsvarets forskningsinstitut FOI.
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Reintroduction of two deleted virulence loci restores full virulence to the live vaccine strain of Francisella tularensis2009Ingår i: Infection and Immunity, ISSN 0019-9567, E-ISSN 1098-5522, Vol. 77, nr 8, s. 3424-3431Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A disadvantage of several old vaccines is that the genetic events resulting in the attenuation are often largely unknown and reversion to virulence cannot be excluded. In the 1950s, a live vaccine strain, LVS, was developed from a type B strain of Francisella tularensis, the causative agent of tularemia. LVS, which is highly attenuated for humans but still virulent for mice by some infection routes, has been extensively studied and found to protect staff from laboratory-acquired tularemia. The efforts to improve biopreparedness have identified a demand for a vaccine against tularemia. Recently the rapid progress in genomics of different Francisella strains has led to identification of several regions of differences (RDs). Two genes carried within RDs, pilA, encoding a putative type IV pilin, and FTT0918, encoding an outer membrane protein, have been linked to virulence. Interestingly, LVS has lost these two genes via direct repeat-mediated deletions. Here we show that reintroduction of the two deleted regions restores virulence of LVS in a mouse infection model to a level indistinguishable from that of virulent type B strains. The identification of the two attenuating deletion events could facilitate the licensing of LVS for use in humans.

  • 25.
    Sheshko, Valeria
    et al.
    Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.
    Link, Marek
    Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi.
    Balonova, Lucie
    Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.
    Stulik, Jiri
    Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.
    Utilization of a tetracycline-inducible system for high-level expression of recombinant proteins in Francisella tularensis LVS2021Ingår i: Plasmid, ISSN 0147-619X, E-ISSN 1095-9890, Vol. 115, artikel-id 102564Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Francisella tularensis is a Gram-negative intracellular pathogen causing tularemia. A number of its potential virulence factors have been identified, but their biology and functions are not precisely known. Understanding the biological and immunological functions of these proteins requires adequate genetic tools for homologous and heterologous expression of cloned genes, maintaining both original structure and post-translational modifications. Here, we report the construction of a new multipurpose shuttle plasmid – pEVbr – which can be used for high-level expression in F. tularensis. The pEVbr plasmid has been constructed by modifying the TetR-regulated expression vector pEDL17 (LoVullo, 2012) that includes (i) a strong F. tularensis bfr promoter, and (ii) two tet operator sequences cloned into the promoter. The cloned green fluorescent protein (GFP), used as a reporter, demonstrated almost undetectable basal expression level under uninduced conditions and a highly dynamic dose-dependent response to the inducer. The utility of the system was further confirmed by cloning the gapA and FTT_1676 genes into the pEVbr vector and quantifying proteins expression in F. tularensis LVS, as well as by studying post-translational modification of the cloned genes. This study demonstrates that high levels of recombinant native-like Francisella proteins can be produced in Francisella cells. Hence, this system may be beneficial for the analysis of protein function and the development of new treatments and vaccines.

  • 26.
    Tancred, Linda
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Telepnev, Maxim
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Golovlev, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Andersson, Blanka
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Andersson, Henrik
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Lindgren, Helena
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Administration of a donor of nitric oxide inhibits mglA expression of intracellular Francisella tularensis and counteracts phagosomal escape and subversion of TNF-α secretion2011Ingår i: Journal of Medical Microbiology, ISSN 0022-2615, E-ISSN 1473-5644, Vol. 30, nr 11, s. 1570-1583Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Francisella tularensis is a highly virulent intracellular bacterium capable of rapid multiplication in phagocytic cells. Previous studies have revealed that activation of F. tularensis-infected macrophages leads to control of infection and reactive nitrogen and oxygen species make important contributions to the bacterial killing. We investigated the effects of adding S-nitroso-acetyl-penicillamine (SNAP), which generates nitric oxide or 3-morpholinosydnonimine hydrochloride (SIN-1), which indirectly leads to formation of peroxynitrite, to J774 murine macrophage-like cell cultures infected with F. tularensis LVS. Addition of SNAP led to significantly increased colocalization between LAMP-1 and bacteria, indicating containment of F. tularensis in the phagosome within 2 h, although no killing occurred within 4 h. A specific inhibitory effect on bacterial transcription was observed since the gene encoding the global regulator MglA was inhibited 50- to 100-fold. F. tularensis-infected J774 cells are incapable of secreting TNF-alpha in response to Escherichia coli LPS but addition of SNAP almost completely reversed the suppression. Similarly, infection with an MglA mutant did not inhibit LPS-induced TNF-alpha secretion of J774 cells. Strong staining for nitrotyrosine was observed in SNAP-treated bacteria and mass spectrometry identified nitration of two ribosomal 50S proteins, a CBS domain pair protein, and bacterioferritin. The results demonstrate that addition of SNAP initially did not affect the viability of intracellular F. tularensis LVS but led to containment of the bacteria in the phagosome. Moreover, the treatment resulted in nitration of several F. tularensis proteins.

  • 27. Wallet, Pierre
    et al.
    Benaoudia, Sacha
    Mosnier, Amandine
    Lagrange, Brice
    Martin, Amandine
    Lindgren, Helena
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Golovliov, Igor
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Michal, Fanny
    Basso, Pauline
    Djebali, Sophia
    Provost, Angelina
    Allatif, Omran
    Meunier, Etienne
    Broz, Petr
    Yamamoto, Masahiro
    Py, Benedicte F.
    Faudry, Eric
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Henry, Thomas
    IFN-gamma extends the immune functions of Guanylate Binding Proteins to inflammasome-independent antibacterial activities during Francisella novicida infection2017Ingår i: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 13, nr 10, artikel-id e1006630Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Guanylate binding proteins (GBPs) are interferon-inducible proteins involved in the cellintrinsic immunity against numerous intracellular pathogens. The molecular mechanisms underlying the potent antibacterial activity of GBPs are still unclear. GBPs have been functionally linked to the NLRP3, the AIM2 and the caspase-11 inflammasomes. Two opposing models are currently proposed to explain the GBPs-inflammasome link: i) GBPs would target intracellular bacteria or bacteria-containing vacuoles to increase cytosolic PAMPs release ii) GBPs would directly facilitate inflammasome complex assembly. Using Francisella novicida infection, we investigated the functional interactions between GBPs and the inflammasome. GBPs, induced in a type I IFN-dependent manner, are required for the F. novicida-mediated AIM2-inflammasome pathway. Here, we demonstrate that GBPs action is not restricted to the AIM2 inflammasome, but controls in a hierarchical manner the activation of different inflammasomes complexes and apoptotic caspases. IFN-gamma induces a quantitative switch in GBPs levels and redirects pyroptotic and apoptotic pathways under the control of GBPs. Furthermore, upon IFN-gamma priming, F. novicida-infected macrophages restrict cytosolic bacterial replication in a GBP-dependent and inflammasome-independent manner. Finally, in a mouse model of tularemia, we demonstrate that the inflammasome and the GBPs are two key immune pathways functioning largely independently to control F. novicida infection. Altogether, our results indicate that GBPs are the master effectors of IFN-gamma-mediated responses against F. novicida to control antibacterial immune responses in inflammasome-dependent and independent manners.

    Ladda ner fulltext (pdf)
    fulltext
1 - 27 av 27
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf