Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Mutsaers, Maud
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Engdahl, Cecilia
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Wilkman, Lukas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Ahlm, Clas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Evander, Magnus
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Lwande, Olivia Wesula
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Vector competence of Anopheles stephensi for O'nyong-nyong virus: a risk for global virus spread2023In: Parasites & Vectors, E-ISSN 1756-3305, Vol. 16, no 1, article id 133Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: O'nyong-nyong virus (ONNV) is a mosquito-borne alphavirus causing sporadic outbreaks of febrile illness with rash and polyarthralgia. Up to now, ONNV has been restricted to Africa and only two competent vectors have been found, Anopheles gambiae and An. funestus, which are also known malaria vectors. With globalization and invasive mosquito species migrating to ONNV endemic areas, there is a possible risk of introduction of the virus to other countries and continents. Anopheles stephensi, is closely related to An. gambiae and one of the invasive mosquito species of Asian origin that is now present in the Horn of Africa and spreading further east. We hypothesize that An. stephensi, a known primary urban malaria vector, may also serve as a new possible vector for ONNV.

    METHODS: One-week-old female adult An. stephensi were exposed to ONNV-infected blood, and the vector competence for ONNV, i.e. infection rates (IRs), dissemination rates (DRs), transmission rates (TRs), dissemination efficiency (DEs) and transmission efficiency (TEs), were evaluated. Infection (IRs), dissemination efficiency (DEs) and transmission efficiency (TEs) were determined. Detection of ONNV RNA was analysed by RT-qPCR in the thorax and abdomen, head, wings, legs and saliva of the infected mosquitoes at four different time points, day 7, 14, 21 and 28 after blood meal. Infectious virus in saliva was assessed by infection of Vero B4 cells.

    RESULTS: The mean mortality across all sampling times was 27.3% (95 confidence interval [CI] 14.7-44.2%). The mean rate of infection across all sampling periods was 89.5% (95% CI 70.6-95.9). The mean dissemination rate across sampling intervals was 43.4% (95% CI 24.3-64.2%). The mean TR and TE across all mosquito sampling time intervals were 65.3 (95% CI 28.6-93.5) and 74.6 (95% CI 52.1-89.4). The IR was 100%, 79.3%, 78.6% and 100% respectively at 7, 14, 21 and 28 dpi. The DR was the highest at 7 dpi with 76.0%, followed by 28 dpi at 57.1%, 21 dpi at 27.3% and 14 dpi at the lowest DR of 13.04%. DE was 76%, 13.8%, 25%, 57.1% and TR was 79%, 50%, 57.1% and 75% at 7, 14, 21 and 28 dpi respectively. The TE was the highest at 28 dpi, with a proportion of 85.7%. For 7, 14 and 21 dpi the transmission efficiency was 72.0%, 65.5% and 75.0% respectively.

    CONCLUSION: Anopheles stephensi is a competent vector for ONNV and being an invasive species spreading to different parts of the world will likely spread the virus to other regions.

    Download full text (pdf)
    fulltext
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf